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SW SPIN WAVES

Spin waves

Spin waves (magnons) are propagating disturbances of an ordered magnetic lattice

i = 0

k = 0

The magnetic ordering arises due to the exchange interactions  between electrons on atomic sites  and .

The dispersion relation  of spin waves can be measured by inelastic neutron scattering, and directly depends on the exchange
interactions

Spin waves are deviations from an ordered state, so in principle can only be seen in the ordered state
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SW LINEAR SPIN WAVE THEORY

Linear Spin Wave Theory
We'll now derive the spin wave dispersion for a ferromagnet in linear spin wave theory

The steps involved in the derivation are:

1. Beginning with a spin Hamiltonian, express the spin operator vector  as the ladder operators 

2. Map the raising (lowering) operators to bosonic anihilation (creation) operators  ( ) via the Holstein-Primakoff transformation.

3. The transformed Hamiltonian is a series expansion in powers of , but in linear spin wave theory we take only the terms which are
linear in .

4. Fourier transform the Hamiltonian.

5. Diagonalise the Hamiltonian, ensuring that the commutation relation of the bosonic operators are respected (for two-sublattice
system such as antiferromagnetic, the Bogoliubov transformation can be used for this purpose).
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y

i Ŝ
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SW LINEAR SPIN WAVE THEORY

Heisenberg Hamiltonian:

The Hamiltonian of an ordered magnet can be expressed in terms of the spin operators for site , .

For example, the Heisenberg Hamiltonian is:

where  is the exchange interaction with the indices  and  running over magnetic atoms within a single magnetic unit cell, and  and 
 label different unit cells.

 is the spin operator for site , which can be re-expressed in terms of the ladder operators :
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Ŝ
y

= ( ± )Ŝ
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SW LINEAR SPIN WAVE THEORY

Holstein-Primakoff transformation

To determine the magnons (magnetic normal modes), we map the excitations to a simple harmonic operator

The ordered ground state is the state with the maximum azimuthal quantum number , and the action of the ladder operator is:

We now map the ladder operators to boson creation and anihilation operators  and :

mapping also the ordered state  to the vacuum state , such that the action of  is analogous to 

So, substituting  and re-arranging the ladder operator terms:

In linear spin wave theory we ignore the terms in red
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SW LINEAR SPIN WAVE THEORY

Using the identities  and  we have the following mappings

So the Heisenberg Hamiltonian (ignoring terms which are not linear in ) is now:
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SW LINEAR SPIN WAVE THEORY

Fourier transformation

In the expression for the spin Hamiltonian we have a sum over all magnetic sites. This can be simplified to just sites  and  within the
magnetic unit cell by Fourier transforming the Hamiltonian. The Fourier transform of the Holstein-Primakoff operator is:

Let us take one term from the Hamiltonian, ; its Fourier transform is:

The periodicity of the crystal implies that the exchange interaction is translationally invariant such that  where  so
the Fourier transform becomes:

where the terms in the square brackets is the Fourier transform of the exchange interactions  where the indices  label only sites
within the magnetic unit cell. We now use the identity  to obtain:
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SW LINEAR SPIN WAVE THEORY

So the Fourier transformed Hamiltonian becomes:

Which can be expressed as a matrix equation:

where the square brackets denote a block matrix and we have omitted the  indices on the bosonic operators.

The off-diagonal blocks are only zero in this case because we are using the Heisenberg Hamiltonian. For anisotropic Hamiltonians (e.g. 
or Dzyaloshinskii-Moriya interactions), these blocks will not be zero
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SW LINEAR SPIN WAVE THEORY

Setting:

The Hamiltonian is:

With the matrix  as shown previously and  indicates a complex conjugate transpose.

At each  the eigenvalues of the matrix  will be the magnon energies  and the eigenvalues can be used to calculate the spin-spin
correlation function and hence the neutron scattering cross-section.
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SW LINEAR SPIN WAVE THEORY

Heisenberg Ferromagnet

For a ferromagnet, there is only one magnetic atom in the unit cell, so
the Hamiltonian is diagonal already:

The Fourier transform is just:

So we obtain 

In general, however, the Hamiltonian is not diagonal and so must be
diagonalised.

This can be done using the Bogoliubov transformation for an
antiferromagnet

SpinW uses a more general method due to Colpa, as explained in the
SpinW paper
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SW SPIN-SPIN CORRELATION FUNCTION

Now we have  and half the story. Remember for neutron scattering:

With the correlation function:

 is related to the Fourier transform of the eigenvectors of the Hamiltonian at .
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SW LINEAR SPIN WAVE THEORY

Summary

Linear spin wave theory calculations requires:

The exchange interactions
The magnetic structure

It expands the spin ladder operators as a power series in bosonic creation/anihilation operators, keeping only linear terms

For each momentum transfer  a Hamiltonian matrix has to be diagonalised to obtain the magnon energies and spin-spin correlation
functions

The size of the matrix is proportional to the number of magnetic atoms in the unit cell

So, larger (or more complex) magnetic structures require more memory; and more -points require longer processing time
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SW

Crash course in MATLAB

SpinW runs in MATLAB and Python, but today we will be focusing on MATLAB.

The concepts.... Arrays, Indexing, Objects





SW ARRAYS - NUMERIC

They are created using square brackets – comma or space separation for columns in a row, semi-colon separation for new rows, higher
dimensions using indexing / repmat command

1D arrays

2D arrays

3D arrays

w_1row = [1,2,3]; 
w_1col = [1;2;3]; 
w_1col_to_1row = [1;2;3]’; 

w_rowcol = [1,2,3;4,5,6];

w3d = repmat(w_rowcol,[1,1,3]) 
w3d(:,:,1) = w_rowcol;  w3d(:,:,2) = w_rowcol+2; 





SW ARRAYS - STRINGS

Creating Strings

Strings arrays are concatenated similar to numeric arrays....

my_string = ‘hello world’;

my_string2 = [my_string, ’ hello everyone’];





SW ARRAYS - STRUCTURED

Structure arrays provide a way of storing more general information, referenced by fields.

w = struct(); 
w.tom = [1,2,3]; 
w.dick = ‘hello world’; 
w.harry = [4,5,6,7;8,9,10,11]; 





SW ARRAYS - CELLS

Cell arrays are another generic data storage mechanism, with a matrix-like structure.

Note that the cell array is described by a curly bracket, not a square bracket!

cell1 = {[1,2,3], ’hello_world’, [4,5,6;7,8,9]}; 
cell2 = {[1,23], ’hello_world’; [4,5,6;7,8,9], cell1}; 





SW INDEXING

Arrays can be indexed. Note that the ordering is the reverse to Python and indexes start from 1!.

So w1(3) = 5 etc.

So wcell{3} = [1,2,3] etc.

In 2D:

So w2(2,3) = 6

w1 = [1,3,5,7]

wcell = {‘hello’,’world’,[1,2,3]}

w2 = [1,2,3; 4,5,6]

w2(:,[1:2]) = [1,2;4,5] 
w2(:,[1,3]) = [1,3;4,6] 
                





SW OBJECTS AND METHODS

Objects are data structures with defined properties, and internal self-consistency checks.

Cell arrays, structure arrays etc. are examples of Matlab’s built-in objects.
You can define your own, which is what we have done with SpinW  

You create a SpinW object with:

Methods are the functions that work on defined objects.

SpinW has many methods. e.g.

s = spinw();

s.plot()





SW OBJECTS AND METHODS

Getting help for objects and methods
To find all the methods working on an object, use the methods function which the name of the object class.

Get help if you already know the name of a particular method for an object class e.g. addatom:

methods(spinw)

help spinw/addatom 
doc spinw/addatom





SW GETTING HELP

Function help
For any function that starts with sw_* use: 
help sw_*

SpinW class methods
for spinw class methods use: 
help spinw.function_name. 
For help on plotting commands, use:
help swplot.

Online Documentation
All help can be found on  or http://www.spinw.org https://spinw.github.io/spinwdoc



http://www.spinw.org/
https://spinw.github.io/spinwdoc


SW GENERIC MATLAB HELP

The cheatsheet
Many of you might not have extensive experience in MATLAB, so a cheatsheet of common and useful commands might be helpful

I've found that the one on the  to be quite useful.MATLAB file Exchange



https://uk.mathworks.com/matlabcentral/fileexchange/47533-cheatsheet-pdf


SW

Introduction to SpinW

So, how does SpinW work?





SW SPINW FEATURES

SpinW
Solves the general spin Hamiltonian
Calculates spin-spin correlation function
Numerical and symbolical
Can apply crystal symmetry operators on the Hamiltonian - Solving single-q magnetic structures
Solves multi-q magnetic structures on a magnetic supercell
Open source, runs on MATLAB and now python
More information: 
Download from: 

http://www.spinw.org
https://www.github.com/spinw/spinw



http://www.spinw.org/
https://www.github.com/spinw/spinw


SW GENERAL HAMILTONIAN

The General Spin Hamiltonian

SpinW solves the general spin hamiltonian:

Where:

Term 1: Bi-linear interactions between site  and site 
Term 2: Single ion terms acting on site 
Term 2: Effect of applied magnetic field on site 
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SW GENERAL HAMILTONIAN

Exchange/Interaction Matrices

There are a few matrices of note (that you will use later):

Anisotropic and antisymmetric (Dzyaloshinskii-Moriya) exchange interactions: 

 
Easy-plane and easy-axis anisotropy: 
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SW SPINW'S IMPLEMENTATION OF THE GENERAL HAMILTONIAN

Creating a SpinW object.

Assuming that everything is properly installed , you can create an empty spinw object with the following: 

You can also create populated spinw objects from cif files. 

 More on this later.....

∗

s = spinw();

s = spinw('./my_crystal.cif');

∗





SW SPINW'S IMPLEMENTATION OF THE GENERAL HAMILTONIAN

The General Spin Hamiltonian

Necessary input information:

In order to solve the above Hamiltonian in SpinW you need the following components:

Crystal structure: Cell lengths/angles, Symmetry.
Exchange structure: Atomic sites, Interaction matrices, Single ion matrices.
Magnetic Structure: Spin vectors in the unit cell.

This is often the hardest part
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SW SPINW'S IMPLEMENTATION OF THE GENERAL HAMILTONIAN

Crystal structure

The crystal structure is usually the easiest to determine, commonly by x-rays or powder neutron diffraction.

Lengths: , , , given in Angstroms
Angles: , , , given in degrees or radians with an additional flag.
Symmetry:Given as a symbol/number from the international table of crystallography or a string of symmetry operations.

This information is added to the object via:

a b c

α β γ

s.genlattice('lat_const',[3 3 4],'angled',[90 90 120],'spgr','P 6') 
s.genlattice('lat_const',[3 3 4],'angled',[90 90 120],'spgr',168) 
s.genlattice('lat_const',[3 3 4],'angled',[90 90 120],'spgr','-y,x-y,z; -x,-y,z','label','R -3 m')





SW SPINW'S IMPLEMENTATION OF THE GENERAL HAMILTONIAN

Adding Atoms

Object now needs some atoms which may have/not have spin. To add a magnetic atom with  at position  and a non-
magnetic one at  with red and blue color respectively use the following command: 

Adding Matrices

Before you can say how atoms are linked or their properties, you need to add matrices to define the property. For example, an exchange
matrix ( ) and an easy axis matrix ( ). 

S = 1 r = (0,0,0)

r = (1/2,0, 0)

s.addatom('r',[0 1/2; 0 0; 0 0],'S',[1 0],'color',{'red' 'blue'}, 'label', {'Co', 'H'})

J1 K0

s.addmatrix('value', 1, 'label', 'J1'); 
s.addmatrix('value', [0, 0, -0.1], 'label', 'K0');





SW SPINW'S IMPLEMENTATION OF THE GENERAL HAMILTONIAN

Assigning Matrices

Now you have all the atoms in the unit cell, you have to calculate all the possible exchanges. Luckily, symmetry is used in this calculation.
Possible couplings are generated and can be viewed with:

If you want to add our exchange  as defined earlier to bond 2 in the list: 

And single ion anisotropy defined by  

s.gencoupling() 
s.table('bond',1:3)

J1

s.addcoupling('mat','J1','bond',2)

A0

s.addaniso('A0')





SW SPINW'S IMPLEMENTATION OF THE GENERAL HAMILTONIAN

Defining the magnetic structures

As alluded to earlier, defining the magnetic structure is one of the hardest aspects of spinw and could easily take a 2-hour lecture. 

DON'T PANIC!

We will introduce a few concepts in the examples and there is a presentation  which goes into more detail. Some important points to
remember are: 

Magnetic structures can be extracted from powder diffraction measurements.
In real life the obtained magnetic structure will probably need tweaking.
SpinW has spin-energy minimization codes to help you.
 

here



https://spinw.org/magneticStructurePresentation


SW SPINW'S IMPLEMENTATION OF THE GENERAL HAMILTONIAN

Generating a magnetic structure

Rather than inputting the magnetic structure directly, it is recommended to use the spinw.genmagstr() function to generate the magnetic
structure.

This function checks your input for errors and also provides short-cuts for common use-cases, using various modes:

helical single-  helix

fourier single-  helix or modulated structure

rotate uniform rotation of all moments

direct direct input of structure using all fields k, F, nExt

tile tile a magnetic supercell

func using a function to generate k, F, nExt

random random moments

genmagstr() always respects nExt, so a combination of an input nExt and k will generate a magnetic supercell which is extended first by
nExt and then by k

k

k





SW

Does anyone have any questions?





SW INSTALLING VIA MATLAB

Using the MATLAB package - The easy way
SpinW is now a MATALB add-on and can be downloaded directly from Mathworks.

Then search for SpinW and hit install.

Verify with s = spinw;

Updating:

Add-Ons  Check for updates  Update

NOTE
This version may not correspond to the sw_update version!

→ →





SW INSTALLING SPINW

Get the code - The manual way:
SpinW is available at:

Steps:
Unzip the archive into your preferred directory
Open MATLAB and run install_spinw from inside this directory
Verify with s = spinw;
 

Updating:
I am trying to make releases 2-3 times a year. It's always nice to be on the latest code!
There is a self update function sw_update 
This retrieves and installs the package from the link above.

Developing:
If you want to help develop a feature and contribute, please git clone  and create a pull request
(to development branch)

https://www.github.com/spinw/spinw/releases/latest

https://www.github.com/spinw/spinw.git



https://www.github.com/spinw/spinw/releases/latest
https://www.github.com/spinw/spinw/


SW GETTING HELP

Function help
For any function that starts with sw_* use: 
help sw_*

SpinW class methods
for spinw class methods use: 
help spinw.function_name. 
For help on plotting commands, use:
help swplot.

Online Documentation
All help can be found on  or 

.

An introductory live notebook can be found  and in .

http://www.spinw.org https://spinw.github.io/spinwdoc

here pdf form



http://www.spinw.org/
https://spinw.github.io/spinwdoc
https://spinw.org/ESS2022/matlab/SpinW_Intro.mlx
https://spinw.org/ESS2022/matlab/SpinW_Intro.pdf


SW

For the things we have to learn before we can
do them, we learn by doing them.

Aristotle





SW

Tutorials 1

Getting started in SpinW





SW

Excitations on a triangular lattice

Download the script here: sw_tutorial_01.m



https://spinw.org/ESS2022/matlab/sw_tutorial_01.m


SW

 magnetic structure

Let's try this with a  magnetic structure

k = [1 1 0]/3

k = [1 1 0]/3





SW CREATING THE LATTICE

Creating the lattice

We have:

Created a SpinW object
Generated a lattice of , ,  and , 

In the plot window, you can zoom with the mouse wheel, pan by pressing the Ctrl button while dragging. Change the plot range and view
direction by pressing the corresponding button on the top.

Questions:

What is the default symmetry and what does it mean?

tri = spinw; 
tri.genlattice('lat_const',[3 3 4],'angled',[90 90 120]) 
plot(tri)

a = 3Å b = 3Å c = 4Å α = β = 90
∘ γ = 120

∘





SW ADDING ATOMS

Adding atoms

We have added an magnetic Cr  at position  with spin 

tri.addatom('r',[0 0 0],'S',3/2,'label','MCr3') 
plot(tri)

3+ [0, 0, 0] S = 3/2





SW SPIN HAMILTONIAN

Creating the Spin-Hamiltonian
We create an antiferromagnetic first neighbor Hamiltonian plus easy plane single ion anisotropy

Red ellipsoids represent the single ion anisotropy on the plot (equienergetic surface)

Questions:

What have we done in each code part?
Examine the plot and test different values of A0 with different signs

A0 = -0.1; 
tri.addmatrix('label','J1','value',1) 
tri.addmatrix('label','A','value',[0 0 0;0 0 0;0 0 A0]) 
 
tri.gencoupling 
 
tri.addcoupling('mat','J1','bond',1) 
tri.addaniso('A') 
 
plot(tri,'range',[3 3 1/2],'cellMode','inside')





SW MAGNETIC STRUCTURE

Creating the magnetic structure:

We have seen the ground state magnetic structure of the above Hamltonian is a spiral, with propagation vector of . 
We define the plane of the spiral as the  plane

Careful: the given spin vector is column vector!

Questions:

What are the angles between nearest neighbor moments?

(1/3,1/3,0)

ab

tri.genmagstr('mode', 'helical', 'S', [1;0;0], 'k',[1/3 1/3 0], 'n', [0 0 1], 'nExt', [1 1 1]) 
plot(tri, 'range', [3 3 1/2], 'cellMode', 'inside', 'magColor', 'red')





SW SPIN WAVE DISPERSION

Calculating the spin wave dispersion

We calculate the spin wave dispersion along the  high symmetry direction

Questions:

How many modes are there and why?
What does the red line mean?
Did you get any warning?

(H,H, 0)

spec = tri.spinwave({[0 0 0] [1 1 0] 500}, 'hermit', false); 
figure 
sw_plotspec(spec, 'mode', 'disp', 'imag', true, 'colormap', [0 0 0], 'colorbar', false) 
axis([0 1 0 5])





SW SPIN-SPIN CORRELATION FUNCTIONS

Calculating the spin-spin correlations
The spin-spin correlations are already calculated, however it contains 9 numbers per Q-point per mode. It is not possible to show this on a
single plot. But:

1. we can calculate the neutron scattering cross section
2. we can select one of the components 
3. we can sum up the diagonal 

Questions:

How is it related to the magnetic propagation vector?
Why are some modes gapped? Which correlations are gapped?
Why do we have Szz?

(Q,ω)Sαβ

(Q,ω)Sαα

spec = sw_egrid(spec, 'component', {'Sxx+Syy' 'Szz'}, 'Evect', 0:0.01:5); 
% Try other components! 
figure 
sw_plotspec(spec,'mode','color','dE',0.2,'imag',false) 
axis([0 1 0 5.5]) 
caxis([0 3])





SW

 magnetic structure

Let's try this with a  magnetic structure

k = 0

k = 0





SW GENERATING THE MAGNETIC STRUCTURE

 magnetic structure

Duplicate the original object using the .copy() command, 
Why are we using the .copy() command?

Compare the energy per spin of the old magnetic structure and the new magnetic structure using the spinw.energy() function.

Questions:

How does the magnetic structures compare?
Are they the same?
Why?

k = 0

triNew = copy(tri); 
triNew.genmagstr('mode','rotate','n',[0 0 1]) 
phi1 = atan2(triNew.magstr.S(2,1),triNew.magstr.S(1,1)); 
triNew.genmagstr('mode','rotate','n',[0 0 1],'phi',-phi1) 
plot(triNew,'range',[3 3 1])
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Calculating the spin wave dispersion

We calculate the spin wave dispersion along the  high symmetry direction

Questions:

How many number of modes are there and why?
Is there more than before?
Why are there vertical lines in the dispersion?
Which structure is the correct one?

(H,H, 0)

spec = triNew.spinwave({[0 0 0] [1 1 0] 500}, 'hermit', false); 
figure 
subplot(2, 1, 1) 
sw_plotspec(spec, 'mode', 'disp', 'imag', true, 'colormap', [0 0 0], 'colorbar', false) 
axis([0 1 0 5]) 
spec = sw_egrid(spec, 'component', 'Sperp', 'Evect', 0:0.01:5.5); 
subplot(2, 1, 2) 
sw_plotspec(spec, 'mode', 'color', 'dE', 0.2, 'imag', false) 
axis([0 1 0 5.5]) 
caxis([0 3])
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SW

The FM kagome lattice

Download the script here: sw_tutorial_02.m



https://spinw.org/ESS2022/matlab/sw_tutorial_02.m


SW TUTORIAL 2: WORKED EXAMPLE

Expected magnetic structure of our Kagome
lattice

Tutorial 2: The FM Kagome Lattice

This tutorial puts the emphasis on you, it is mostly fill in the blanks using the previous
tutorial as a template.

It is useful to remember the SpinW stages:

Define the crystal/atomic structure.
Add magnetic interactions.
Define a magnetic structure.
Perform a calculation.

This tutorial is a little tricky, all details are in the text and the SpinW help is useful for
syntax.

I will also be walking around to help.
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Thank you!
Well done if you're still awake!
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