
SW SpinW



SW SpinW

A crash course on SpinW - Part 1
SpinW (spin-double-u) is a MATLAB library that can optimize magnetic structures using mean field
theory and calculate spin wave dispersion and spin-spin correlation function for complex crystal and
magnetic structures.

PRESENTED BY

Simon Ward

Scientific Software Developer - ESS

Duc Le

Instrument Scientist - ISIS Facility



SW

Linear Spin Wave Theory Review

15 minute introduction on LSWT



SW SPIN WAVES

Spin waves

Spin waves (magnons) are propagating disturbances of an ordered magnetic lattice

i = 0

k = 0

The magnetic ordering arises due to the exchange interactions between electrons on atomic sites and .

The dispersion relation of spin waves can be measured by inelastic neutron scattering, and directly depends on the exchange
interactions

Spin waves are deviations from an ordered state, so in principle can only be seen in the ordered state

Jij i j

ω(q)



SW LINEAR SPIN WAVE THEORY

Linear Spin Wave Theory
We'll now derive the spin wave dispersion for a ferromagnet in linear spin wave theory

The steps involved in the derivation are:

1. Beginning with a spin Hamiltonian, express the spin operator vector as the ladder operators

2. Map the raising (lowering) operators to bosonic anihilation (creation) operators () via the Holstein-Primakoff transformation.

3. The transformed Hamiltonian is a series expansion in powers of , but in linear spin wave theory we take only the terms which are
linear in .

4. Fourier transform the Hamiltonian.

5. Diagonalise the Hamiltonian, ensuring that the commutation relation of the bosonic operators are respected (for two-sublattice
system such as antiferromagnetic, the Bogoliubov transformation can be used for this purpose).

= (, ,)Si Ŝ
x

i Ŝ
y

i Ŝ
z

i (, ,)Ŝ
+

i Ŝ
−

i Ŝ
z

i

a† a

, aa†

aa†



SW LINEAR SPIN WAVE THEORY

Heisenberg Hamiltonian:

The Hamiltonian of an ordered magnet can be expressed in terms of the spin operators for site , .

For example, the Heisenberg Hamiltonian is:

where is the exchange interaction with the indices and running over magnetic atoms within a single magnetic unit cell, and and
 label different unit cells.

 is the spin operator for site , which can be re-expressed in terms of the ladder operators :

since so

i Si

H = ⋅∑
mi,nj

Jmi,njSi Sj

Jmi,nj i j m

n

= (, ,)Si Ŝ
x

i Ŝ
y

i Ŝ
z

i i , ,Ŝ
+

i Ŝ
−

i Ŝ
z

i

H = (+ +)∑
mi,nj

Jmi,nj Ŝ
x

i Ŝ
x

j Ŝ
y

i Ŝ
y

j Ŝ
z

i Ŝ
z

j

= ((+)/4 +)∑
mi,nj

Jmi,nj Ŝ
+

i Ŝ
−

j Ŝ
−

i Ŝ
+

j Ŝ
z

i Ŝ
z

j

= ± iŜ
±

Ĵ
x

Ŝ
y

= (±)Ŝ
x,y ±1√

2
Ŝ

+
Ŝ

−



SW LINEAR SPIN WAVE THEORY

Holstein-Primakoff transformation

To determine the magnons (magnetic normal modes), we map the excitations to a simple harmonic operator

The ordered ground state is the state with the maximum azimuthal quantum number , and the action of the ladder operator is:

We now map the ladder operators to boson creation and anihilation operators and :

mapping also the ordered state to the vacuum state , such that the action of is analogous to

So, substituting and re-arranging the ladder operator terms:

In linear spin wave theory we ignore the terms in red

|m = S⟩

|m⟩ = |m ± 1⟩Ŝ
±

(S ∓ m)(S + 1 ± m)
− −−−−−−−−−−−−−−−

√

a
†

a

a|n⟩ |n − 1⟩ |n⟩ = |n + 1⟩n
−−

√ a
†

n + 1− −−−−√

|m = S⟩ |n = 0⟩ |n⟩a† |S⟩Ŝ
−

m = S − n

|n⟩Ŝ
+

|n⟩Ŝ
−

= |n − 1⟩(2Sn)(1 −)
n − 1

2S

− −−−−−−−−−−−−−
√

= |n + 1⟩2S(n + 1)(1 −)
n − 1

2S

− −−−−−−−−−−−−−−−−
√



SW LINEAR SPIN WAVE THEORY

Using the identities and we have the following mappings

So the Heisenberg Hamiltonian (ignoring terms which are not linear in) is now:

n = aa† |m⟩ = m|m⟩Sz

Ŝ
+

i

Ŝ
−

i

Ŝ
z

i

= ai 2Si
−−−

√

= a
†
i

2Si
−−−

√

= − aSi a†

aa†

H = [(+)− −]∑
mi,nj

Jmi,nj

SiSj
− −−−

√

2
aia

†
j a

†
i aj Siaia

†
i Sjaja

†
j



SW LINEAR SPIN WAVE THEORY

Fourier transformation

In the expression for the spin Hamiltonian we have a sum over all magnetic sites. This can be simplified to just sites and within the
magnetic unit cell by Fourier transforming the Hamiltonian. The Fourier transform of the Holstein-Primakoff operator is:

Let us take one term from the Hamiltonian, ; its Fourier transform is:

The periodicity of the crystal implies that the exchange interaction is translationally invariant such that where so
the Fourier transform becomes:

where the terms in the square brackets is the Fourier transform of the exchange interactions where the indices label only sites
within the magnetic unit cell. We now use the identity to obtain:

i j

= exp(−iq ⋅ r)a(†) 1

N
−−√
∑

q

b
(†)
q

∑mi,nj Jmi,njaia
†
j

FT[] = exp(−iq ⋅) exp(−i ⋅)∑
mi,nj

Jmi,njaia
†
j

1

N
∑
mi,nj

∑
q,q ′

Jmi,nj rm q
′

rn bi,q b
†
j,q ′

= (d)Jmi,nj Jij d = −rm rn

[(d) exp(−i ⋅ d)]exp(−i(q −) ⋅)
1

N
∑
q,q ′

∑
ij

Jij q′ q′ rm bi,q b
†
j,q ′

(q)Jij ij

(1/N) exp(−i(q −) ⋅ r) =∑q,q ′ q′ δqq ′

FT[] = (q)∑
mi,nj

Jmi,njaia
†
j ∑

ij

Jij bi,q b
†
j,q



SW LINEAR SPIN WAVE THEORY

So the Fourier transformed Hamiltonian becomes:

Which can be expressed as a matrix equation:

where the square brackets denote a block matrix and we have omitted the indices on the bosonic operators.

The off-diagonal blocks are only zero in this case because we are using the Heisenberg Hamiltonian. For anisotropic Hamiltonians (e.g.
or Dzyaloshinskii-Moriya interactions), these blocks will not be zero

= (q)[(+)− −]Hq ∑
ij

Jij

SiSj
− −−−

√

2
bi,q b

†
j,q b

†
i,q bj,q Sibi,q b

†
i,q Sjb

†
j,qbj,q

= ()Hq b
†
1 … b

†
N

b1 … bN

⎛

⎝

⎜
⎜
⎜⎜
⎜

[(q) − (q = 0)]
SiSj√

2
Jij δijSiJij

0

0

[(q) − (q = 0)]
SiSj√

2
Jij δijSiJij

⎞

⎠

⎟
⎟
⎟⎟
⎟

⎛

⎝

⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜

b1

⋮
bN

b
†
1

⋮

b
†
N

⎞

⎠

⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟

q

XXZ



SW LINEAR SPIN WAVE THEORY

Setting:

The Hamiltonian is:

With the matrix as shown previously and indicates a complex conjugate transpose.

At each the eigenvalues of the matrix will be the magnon energies and the eigenvalues can be used to calculate the spin-spin
correlation function and hence the neutron scattering cross-section.

b =

⎛

⎝

⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜

b1

⋮
bN

b
†
1

⋮

b
†
N

⎞

⎠

⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟

= bHq b⊤
hq

hq ⊤

q hq ω(q)



SW LINEAR SPIN WAVE THEORY

Heisenberg Ferromagnet

For a ferromagnet, there is only one magnetic atom in the unit cell, so
the Hamiltonian is diagonal already:

The Fourier transform is just:

So we obtain

In general, however, the Hamiltonian is not diagonal and so must be
diagonalised.

This can be done using the Bogoliubov transformation for an
antiferromagnet

SpinW uses a more general method due to Colpa, as explained in the
SpinW paper

i = 0

k = 0

i = 0 i = 1

k = 1/2

i = 0 i = 1 i = 2 i = 3

k = 1/4

i = 0 i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

k = 1/8

= ()()()Hq b† b

J(q) − SJ
S

2

0

0

J(q) − SJ
S

2

b

b†

J(q) = J (exp(−iq ⋅ d) + exp(iq ⋅ d))

= 2J cos(q ⋅ d)

ω(q) = JS (cos(q ⋅ d) − 1)



SW SPIN-SPIN CORRELATION FUNCTION

Now we have and half the story. Remember for neutron scattering:

With the correlation function:

 is related to the Fourier transform of the eigenvectors of the Hamiltonian at .

ωq

∝ (Q) (−) (q,ω)
σd2

dΩdE
F

2 ∑
α,β

δαβ q̂ α q̂ β S
αβ

(k,ω) = ∫ dt ⟨ (q, 0) (−q, t)⟩S
αβ 1

2πℏ
e

−iωt
S
α

S
β

⟨ (q, t)⟩Sα q



SW LINEAR SPIN WAVE THEORY

Summary

Linear spin wave theory calculations requires:

The exchange interactions
The magnetic structure

It expands the spin ladder operators as a power series in bosonic creation/anihilation operators, keeping only linear terms

For each momentum transfer a Hamiltonian matrix has to be diagonalised to obtain the magnon energies and spin-spin correlation
functions

The size of the matrix is proportional to the number of magnetic atoms in the unit cell

So, larger (or more complex) magnetic structures require more memory; and more -points require longer processing time

References

S. Toth and B. Lake, J. Phys.: Condens. Matter 27 166002 (2015)

S. Petit Collection SFN 12 105-121 (2011)

q

q

arxiv:1402.6069

10.1051/sfn/201112006



https://arxiv.org/abs/1402.6069
https://doi.org/10.1051/sfn/201112006

SW

General spin Hamiltonian - SpinW

How does SpinW work?



SW GENERAL HAMILTONIAN

General spin Hamiltonian:

With the anisotropic and antisymmetric (Dzyaloshinskii-Moriya) exchange interactions:

H = ⋅ ⋅ + ⋅ ⋅ +∑
mi,nj

S
T
mi Jmi Snj ∑

mi

S
T
mi Ai Smi μBH

T ∑
mi

giSmi

= ; =JS

⎡

⎣
⎢

Jx

0

0

0

Jy

0

0

0

Jz

⎤

⎦
⎥ JA

⎡

⎣
⎢

0

−Dz

Dy

Dz

0

−Dx

−Dy

Dx

0

⎤

⎦
⎥



SW SPINW FEATURES

Key Points:

Non-Bravais lattice

Additional rotation on every site within unit cell
General interactions

Multi-q magnetic ground states are possible

SpinW

Solves the general spin Hamiltonian
Calculates spin-spin correlation function
Numerical and symbolical
Can apply crystal symmetry operators on the Hamiltonian - Solving single-q magnetic structures
Solves multi-q magnetic structures on a magnetic supercell
Open source, runs on MATLAB and now python
More information:
Download from:

http://www.spinw.org
https://www.github.com/spinw/spinw



http://www.spinw.org/
https://www.github.com/spinw/spinw

SW PREREQUISITES

Operating System
All modern OS's are supported

MATLAB
All versions after R2014b are fully supported.
OPTIONAL: Symbolic Toolbox
OPTIONAL: Parallel Computing Toolbox

Notes
More memory is needed if you have more magnetic atoms
More q-points takes longer
Python is now technically supported but will not be covered here. See

Now lets install

https://www.github.com/spinw/PySpinW



https://www.github.com/spinw/PySpinW

SW INSTALLING LATEST RELEASES

Get the code - The manual way:
SpinW is available at:

Steps:
Unzip the archive into your preferred directory
Open MATLAB and run install_spinw from inside this directory
Verify with s = spinw;

Updating:
I am trying to make releases 2-3 times a year. It's always nice to be on the latest code!
There is a self update function sw_update
This retrieves and installs the package from the link above.

Developing:
If you want to help develop a feature and contribute, please git clone and create a pull request
(to development branch)

https://www.github.com/spinw/spinw/releases/latest

https://www.github.com/spinw/spinw.git



https://www.github.com/spinw/spinw/releases/latest
https://www.github.com/spinw/spinw/

SW INSTALLING VIA MATLAB

Using the MATLAB package - The easy way
SpinW is now a MATALB add-on and can be downloaded directly from Mathworks.

Then search for SpinW and hit install.

Verify with s = spinw;

Updating:

Add-Ons Check for updates Update

NOTE
This version may not correspond to the sw_update version!

→ →



SW GETTING HELP

Function help
For any function that starts with sw_* use:
help sw_*

SpinW class methods
for spinw class methods use:
help spinw.function_name.
For help on plotting commands, use:
help swplot.

Online Documentation
All help can be found on or http://www.spinw.org https://spinw.github.io/spinwdoc



http://www.spinw.org/
https://spinw.github.io/spinwdoc

SW SPINW WORKFLOW

Data transfer diagram in SpinW



SW

Tutorials 1

Getting started in SpinW



SW

Excitations on a triangular lattice

Download the script here: sw_tutorial_01.m



http://spinw.org/Ispra2019/matlab/sw_tutorial_01.m

SW

 magnetic structure

Let's try this with a magnetic structure

k = [1 1 0]/3

k = [1 1 0]/3



SW CREATING THE LATTICE

Creating the lattice

We have:

Created a SpinW object
Generated a lattice of , , and ,

In the plot window, you can zoom with the mouse wheel, pan by pressing the Ctrl button while dragging. Change the plot range and view
direction by pressing the corresponding button on the top.

Questions:

What is the default symmetry and what does it mean?

tri = spinw;
tri.genlattice('lat_const',[3 3 4],'angled',[90 90 120])
plot(tri)

a = 3Å b = 3Å c = 4Å α = β = 90∘ γ = 120∘



SW ADDING ATOMS

Adding atoms

We have added an magnetic Cr at position with spin

tri.addatom('r',[0 0 0],'S',3/2,'label','MCr3')
plot(tri)

3+ [0, 0, 0] S = 3/2



SW SPIN HAMILTONIAN

Creating the Spin-Hamiltonian
We create an antiferromagnetic first neighbor Hamiltonian plus easy plane single ion anisotropy

Red ellipsoids represent the single ion anisotropy on the plot (equienergetic surface)

Questions:

What have we done in each code part?
Examine the plot and test different values of A0 with different signs

A0 = -0.1;
tri.addmatrix('label','J1','value',1)
tri.addmatrix('label','A','value',[0 0 0;0 0 0;0 0 A0])

tri.gencoupling

tri.addcoupling('mat','J1','bond',1)
tri.addaniso('A')

plot(tri,'range',[3 3 1/2],'cellMode','inside')



SW MAGNETIC STRUCTURE

Creating the magnetic structure:

We have seen the ground state magnetic structure of the above Hamltonian is a spiral, with propagation vector of .
We define the plane of the spiral as the plane

Careful: the given spin vector is column vector!

Questions:

What are the angles between nearest neighbor moments?

(1/3,1/3,0)

ab

tri.genmagstr('mode', 'helical', 'S', [1;0;0], 'k',[1/3 1/3 0], 'n', [0 0 1], 'nExt', [1 1 1])
plot(tri, 'range', [3 3 1/2], 'cellMode', 'inside', 'magColor', 'red')



SW SPIN WAVE DISPERSION

Calculating the spin wave dispersion

We calculate the spin wave dispersion along the high symmetry direction

Questions:

How many modes are there and why?
What does the red line mean?
Did you get any warning?

(H,H, 0)

spec = tri.spinwave({[0 0 0] [1 1 0] 500}, 'hermit', false);
figure
sw_plotspec(spec, 'mode', 'disp', 'imag', true, 'colormap', [0 0 0], 'colorbar', false)
axis([0 1 0 5])



SW SPIN-SPIN CORRELATION FUNCTIONS

Calculating the spin-spin correlations
The spin-spin correlations are already calculated, however it contains 9 numbers per Q-point per mode. It is not possible to show this on a
single plot. But:

1. we can calculate the neutron scattering cross section
2. we can select one of the components
3. we can sum up the diagonal

Questions:

How is it related to the magnetic propagation vector?
Why are some modes gapped? Which correlations are gapped?
Why do we have Szz?

(Q,ω)Sαβ

(Q,ω)Sαα

spec = sw_egrid(spec, 'component', {'Sxx+Syy' 'Szz'}, 'Evect', 0:0.01:5);
% Try other components!
figure
sw_plotspec(spec,'mode','color','dE',0.2,'imag',false)
axis([0 1 0 5.5])
caxis([0 3])



SW

 magnetic structure

Let's try this with a magnetic structure

k = 0

k = 0



SW GENERATING THE MAGNETIC STRUCTURE

 magnetic structure

Duplicate the original object using the .copy() command,
Why are we using the .copy() command?

Compare the energy per spin of the old magnetic structure and the new magnetic structure using the spinw.energy() function.

Questions:

How does the magnetic structures compare?
Are they the same?
Why?

k = 0

triNew = copy(tri);
triNew.genmagstr('mode','rotate','n',[0 0 1])
phi1 = atan2(triNew.magstr.S(2,1),triNew.magstr.S(1,1));
triNew.genmagstr('mode','rotate','n',[0 0 1],'phi',-phi1)
plot(triNew,'range',[3 3 1])



SW SPIN WAVE DISPERSION

Calculating the spin wave dispersion

We calculate the spin wave dispersion along the high symmetry direction

Questions:

How many number of modes are there and why?
Is there more than before?
Why are there vertical lines in the dispersion?
Which structure is the correct one?

(H,H, 0)

spec = triNew.spinwave({[0 0 0] [1 1 0] 500}, 'hermit', false);
figure
subplot(2, 1, 1)
sw_plotspec(spec, 'mode', 'disp', 'imag', true, 'colormap', [0 0 0], 'colorbar', false)
axis([0 1 0 5])
spec = sw_egrid(spec, 'component', 'Sperp', 'Evect', 0:0.01:5.5);
subplot(2, 1, 2)
sw_plotspec(spec, 'mode', 'color', 'dE', 0.2, 'imag', false)
axis([0 1 0 5.5])
caxis([0 3])



SW

The FM kagome lattice

Download the script here: sw_tutorial_02.m



http://spinw.org/Ispra2019/matlab/sw_tutorial_02.m

SW EXAMPLE 2

This tutorial will be up to you, using what you have learned in tutorial 1.

Help is available by the MATLAB command, SpinW website and for a limited time.... Me.



SW SpinW

A crash course on SpinW - Part 2
SpinW (spin-double-u) is a MATLAB library that can optimize magnetic structures using mean field
theory and calculate spin wave dispersion and spin-spin correlation function for complex crystal and
magnetic structures.

PRESENTED BY

Simon Ward

Scientific Software Developer - ESS

Duc Le

Instrument Scientist - ISIS Facility



SW

Magnetic Structures in SpinW

Defining and refining a magnetic structure in SpinW



SW INTRODUCTION

⇓

Holstein-Primakoff Transformation

In linear spin wave theory, the vacuum state
corresponds to the fully ordered state

Introduction

Linear spin wave theory is about small deviations of the spins away from their (ordered)
ground state

Therefore, before calculating the spin precessions, we need to define the ordered state

There are two main ways to define the magnetic structure in SpinW:
Directly, by specifying the spin directions in the (super)lattice
For single- structures, the propagation vector and initial spin direction can be
given instead
Single- structures can also be defined by an initial direction and an angular offset

m = S, S − 1, S − 2, . . . , −S

n = 0, 1, 2, . . . , ∞

 corresponds to n = 0 m = S

n = 0

m = S

k

k



SW INTRODUCTION

⇓

Holstein-Primakoff Transformation

In linear spin wave theory, the vacuum state
corresponds to the fully ordered state

Because of the Hamiltonian in SpinW is formulated in a rotating coordinate system,
defining a single- magnetic structure using a propagation vector is computationally
more efficient than defining a supercell

This method will also allow the definition of a true incommensurate structure

This is in contrast to similar programs such as SpinWaveGenie and McPhase which only
allow the supercell definition

However, multi- and more complex structures cannot be defined in this way and will
need a supercell

m = S, S − 1, S − 2, . . . , −S

n = 0, 1, 2, . . . , ∞

 corresponds to n = 0 m = S

n = 0

m = S

k

k



SW

Magnetic Structure Theory

Refresher on basis and propagation vectors



SW MAGNETIC STRUCTURE THEORY

c a

b

k
t

0

l

j

Magnetic Structure Theory Refresher

The magnetic moment in unit cell which is separated from the first unit cell by the
vector can be expressed as a Fourier series,

jth l 0

t

=mj ∑
n

Ψ
kn

j
exp−2πi ⋅tkn



SW MAGNETIC STRUCTURE THEORY

c a

b

k
t

0

l

j

For many materials, there is only a single propagation vector :

The allowed propagation vectors are related to each to each other by the rotation
symmetry of the crystal structure (they are the star of).

In the case of a single- magnetic structure, the spin wave Hamiltonian is invariant under
all rotations

This allows the Hamiltonian to be expressed in a rotating coordinate system which allows
SpinW to calculate more efficiently than codes which define the magnetic structure in
terms of a supercell.

=mj ∑n Ψ
kn

j exp−2πi ⋅tkn

k

=mj Ψ
k

j exp−2πik⋅t

kn

k

k



SW MAGNETIC STRUCTURE THEORY

c a

b

k
t

0

l

j

The basis vector is in general complex.

A complex basis vector requires both and components to produce a real moment

because

A real basis vector will only give a collinear magnetic structure, but possibly with a varying
moment magnitude

A complex basis vector with imaginary part perpendicular to the real part can give helical
magnetic structures.

Reference: A.S. Wills, J. Phys. IV France, 11 (Pr9) 133-158 (2001).

=mj ∑n Ψ
kn

j exp−2πi ⋅tkn

Ψ
k

j

k −k

= [cos(−2πk ⋅ t) + i sin(−2πk ⋅ t)] + [cos(2πk ⋅ t) + i sin(2πk ⋅ t)]mj Ψ
k

j Ψ
−k

j

= 2 Re() cos(−2πk ⋅ t) + 2 Im() sin(−2πk ⋅ t)Ψ
k

j Ψ
k

j

= (= Re() − i Im()Ψ
−k

j Ψ
k

j)† Ψ
k

j Ψ
k

j

https://doi.org/10.1051/jp4:2001906



https://doi.org/10.1051/jp4:2001906

SW

spinw.mag_str

How SpinW stores the magnetic structure



SW STORING MAGNETIC STRUCTURE

SpinW stores the magnetic structure in the spinw.mag_str field.

It can store arbitrary magnetic structures using Fourier components.

Subfields:

The propagation vectors are stored in k
The basis vectors are stored in F
The magnetic supercell in lattice units are stored in nExt

The experimental magnetization can be obtained by multiplying F with the g-tensor!

k

Ψj



SW STORING MAGNETIC STRUCTURE

A helical or modulated single- structure can be stored by using k and F
and setting nExt to a single unit cell [1 1 1]

If there are n atoms in the structural unit cell, F should be an n-column
matrix.

A true incommensurate magnetic structure can be generated by giving
an irrational wavevector

Multi- incommensurate structures may only be approximated in SpinW
(as in other codes) using a supercell

Propagation
vector:

mag_str

Basis
vector:

mag_str

Magnetic
supercell:

mag_str

k

k

k



SW STORING MAGNETIC STRUCTURE

A supercell magnetic structure can be stored by using a real F and nExt
and setting k to zero [0 0 0].

The number of magnetic moments stored in F are: nMagExt =
prod(nExt)*nMagAtom

So, F should be an nMagExt-column matrix with moments in the following
order:

1 2 3

4 5 6

7 8 9

b

a

Ordering of the unit cell in the magnetic super-cell.

Propagation
vector:

mag_str

Basis
vector:

mag_str

Magnetic
supercell:

mag_str



SW STORING MAGNETIC STRUCTURE

1D AFM spin chain

b

ac

Single- mode Supercell mode k

mag_str.N_ext = [1 1 1];
mag_str.k = [1/2 0 0];
mag_str.F = [0;
 1;
 0];

mag_str.N_ext = [2 1 1];
mag_str.k = [0 0 0];
mag_str.F = [0 0;
 1 -1;
 0 0];



SW STORING MAGNETIC STRUCTURE

120 structure on a triangular lattice

a

b

c

Single- mode Supercell mode

∘

k

mag_str.N_ext = [1 1 1];
mag_str.k = [1/3 1/3 0];
mag_str.F = [1;
 i;
 0];

mag_str.N_ext = [3 3 1];
mag_str.k = [0 0 0];
mag_str.F = [1 -0.5 -0.5 -0.5 -0.5 1 -0.5 1
-0.5;
 0 0.86 -0.86 0.86 -0.86 0 -0.86 0
0.86;
 0 0 0 0 0 0 0 0
0];



SW

spinw.genmagstr

How to define a magnetic structure in SpinW



SW GENERATE MAGNETIC STRUCTURE

Generating a magnetic structure

Rather than changing the mag_str field directly, it is recommended to use the genmagstr() function to generate the magnetic structure

This function checks your input for errors and also provides short-cuts for common use-cases, using various modes:

helical

single- helixk

fourier

single- helix or modulated structurek

rotate

uniform rotation of all moments
direct

direct input of structure using all fields , , k F nExt

tile

tile a magnetic supercell
func

using a function to generate , , k F nExt

random

random moments



SW GENERATE MAGNETIC STRUCTURE

spinw.genmagstr('mode',...)

HELICAL

Extend the given structure by applying rotations on the moments
Moments are either given in rotating frame formalism (S,n) or as complex vectors (S)

FOURIER

Generate a single- structure using Fourier components in S

ROTATE

Uniform rotation of all existing moments

chain.genmagstr('mode', 'helical', 'S', [1; 0; 0], 'n', [0 0 1], 'k', [1/8 0 0])
chain.genmagstr('mode', 'helical', 'S', [1; 1i; 0], 'k', [1/8 0 0])

k

chain.genmagstr('mode', 'fourier', 'nExt', [8 1 1], 'S', {[1; 1i; 0] [1/8 0 0]})

chain.genmagstr('mode', 'rotate', 'n', [1 0 0])



SW GENERATE MAGNETIC STRUCTURE

spinw.genmagstr('mode',...)

DIRECT

Direct input of every field

TILE

Tile a magnetic supercell using the given data

chain.genmagstr('mode', 'direct', 'nExt', [4 1 1], 'S', [1 0 -1 0; 0 1 0 -1; 0 0 0 0]);

chain.genmagstr('mode', 'tile', 'nExt', [2 1 1], 'S', [1 0; 0 -1; 0 0]);



SW GENERATE MAGNETIC STRUCTURE

spinw.genmagstr('mode',...)

FUNC

Give parameters to a constraint function to generate magnetic structure

SpinW provides two built-in functions, gm_planar and gm_spherical3d

gm_planar produces a coplanar structure with fittable relative angles between spins and propagation vectors
gm_spherical3d is a generalisation of this for non-coplanar structure

RANDOM

Random magnetization vectors

chain.genmagstr('mode', 'func', 'func', @gm_spherical3d, 'x', [pi/2 0.2 pi/2 0.4 pi/2 0.6 pi/2 0.8 0 0 0 0 0])

chain.genmagstr('mode', 'random', 'nExt', [4 1 1])



SW

Examples

Examples of magnetic structures in SpinW



SW EXAMPLE MAGNETIC STRUCTURES

Helical

a

b

c

Fourier
b

ac

Rotate

b

ac

tri = spinw;
tri.genlattice('lat_const', [4 4 6], 'angled', [90 90 120]);
tri.addatom('r', [0 0 0], 'S', 2, 'label', 'MCr3', 'color', 'gold');
tri.genmagstr('mode', 'helical', 'S', [1; 0; 0], 'n', [0 0 1], 'k', [1/3
1/3 0])

mmod = spinw;
mmod.genlattice('lat_const', [4 4 6], 'angled', [90 90 90]);
mmod.addatom('r', [0.5 0.5 0.5], 'S', 2, 'label', 'MCr3', 'color', 'gold');
mmod.genmagstr('mode', 'fourier', 'S', [0; 1; 0], 'k', [0.07 0 0])

tri = spinw;
tri.genlattice('lat_const', [4 4 6], 'angled', [90 90 120]);
tri.addatom('r', [0 0 0], 'S', 2, 'label', 'MCr3', 'color', 'gold');
tri.genmagstr('mode', 'helical', 'S', [1; 0; 0], 'n', [0 0 1], 'k', [1/3
1/3 0])
tri.genmagstr('mode', 'rotate', 'n', [0 0 1], 'phid', 30)



SW EXAMPLE MAGNETIC STRUCTURES

Direct

a

b

c

Tile

b

ac

sq = spinw;
sq.genlattice('lat_const', [4 4 6], 'angled', [90 90 90]);
sq.addatom('r', [0.5 0.5 0.5], 'S', 2, 'label', 'MCr3', 'color', 'gold');
sq.genmagstr('mode', 'direct', 'S', [0 0 0 0; 1 -1 -1 1; 0 0 0 0], 'nExt',
[2 2 1])

fct = spinw;
fct.genlattice('lat_const', [4 4 6], 'angled', [90 90 90]);
fct.addatom('r', [0 0 0], 'S', 2, 'label', 'MCr3', 'color', 'gold');
fct.addatom('r', [0.5 0.5 0], 'S', 2, 'label', 'MCr3', 'color', 'black');
fct.genmagstr('mode', 'tile', 'S', [0 0; 1 -1; 0 0], 'nExt', [2 2 1])



SW EXAMPLE MAGNETIC STRUCTURES

Function

Parameters for gm_planar is: [phi1 phi2 ... kx ky kz n_theta n_phi], n_theta and n_phi define the
normal of the plane. phiN are relative phases within the plane

b

ac

Random

b

ac

fct = spinw;
fct.genlattice('lat_const', [4 4 6], 'angled', [90 90 90]);
fct.addatom('r', [0 0 0], 'S', 2, 'label', 'MCr3', 'color', 'gold');
fct.addatom('r', [0.5 0.5 0], 'S', 2, 'label', 'MCr3', 'color', 'black');
fct.genmagstr('mode', 'func', 'func', @gm_planar, 'x0', [0 pi/2 1/2 1/2 1 0
0])

fct = spinw;
fct.genlattice('lat_const', [4 4 6], 'angled', [90 90 90]);
fct.addatom('r', [0.5 0.5 0], 'S', 2, 'label', 'MCr3', 'color', 'gold');
fct.genmagstr('mode', 'random', 'nExt', [2 2 1])



SW

Optimising magnetic structures

How to refine structures in SpinW



SW OPTIMIZE MAGNETIC STRUCTURES

The magnetic structure can be optimised as a classical ground state of the spin Hamiltonian, using:

sw.optmagk()

determines the magnetic propagation vector + n-vector

sw.optmagtsteep()

optimise magnetic structure for a given k-vector by succesively rotating each moment to the Weiss field direction
fastest
recommended if k-vector is known

sw.optmagstr()

optimise magnetic structure for minimum energy using non-linear optimization (fminsearch)
can include a constraint function (@gm_planar(), etc.)

sw.anneal()

performs simulated annealing, using the Metropolis algorithm
can calculate thermodynamic properties



SW SPINW.OPTMAGSTR(‘FUNC’,@FUNC, ‘XMIN’, X1, ‘XMAX’, X2,...)

To optimize magnetic structure with constraints, use the spinw.optmagstr() method:

lots of parameters to fit:
ground state magnetic structure with constrained optimization (simplex method)
constraints through external function:

@gm_planar() planar magnetic structure:

 are phase angles for each of the spins in the extended unit cell
 and are the angles defining the plane normal

@gm_spherical3d() general magnetic structure:

 and are azimuth and polar phase angles for each of the spins in the extended unit cell
limits: xmin and xmax, starting value x0

3 + 6Nmag

[M , k, n] = @(x)func(M0, x)

[M , k, n] = @gm_planar(M0, x)

x = (, , . . . , , , , ,)φ1 φ2 kx ky kz nΘ nφ

φn n

nΘ nφ

[M , k, n] = @gm_spherical3d(M0, x)

x = (, , , , . . . , , , , ,)φ1 Θ1 φ2 Θ2 kx ky kz nΘ nφ

φn Θn n



SW

Spin Wave Calculations

Notes on how magnetic structure is used in spin wave calculations in SpinW



SW MAGNETIC STRUCTURE IN ROTATING FRAME

For spin wave calculation, the complex magnetic structure is converted to the rotating frame representation using the spinw.magstr()
function.

Output of spinw.magstr() is a struct with fields:

size of magnetic supercell in l.u. stored in nExt
single k-vector stored in k
vector normal to the spiral plane is stored in n
real magnetic moment directions (spin quantization axis) are stored in S

The representation allows an additional k=0 component parallel to n, however this is rarely used.

The conversion from Fourier components to rotating frame representation is not always possible, in this case magstr() gives the best
approximation and gives a warning. The conversion is approximate:

multi-k structures
non-Bravais lattice with counter-rotating incommensurate spirals
non-Bravais lattice with non-coplanar spirals
non-Bravais antiferromagnet with non-coplanar moments



SW MAGNETIC STRUCTURE AND SPIN WAVE HAMILTONIAN

The spin wave Hamiltonian is expressed in a basis of creation and annihilation operators, one each for each spin in the magnetic unit cell

For a supercell only description of the magnetic structure (with a propagation vector), SpinW will use only this basis, so the size of the
Hamiltonian will be where is the number of spins in the extended unit cell.

For a single- structure, SpinW also has to consider the and branches (as well as) so there are operators in the basis.

In the 1D chain case, we have only 2 spins in the unit cell, so the supercell description gives 4-operator basis but the rotating frame
description needs 6 operators.

In the 2D triangular lattice, we have so there are 9 spins in the unit cell giving an 18-operator basis in the supercell method. In
contrast in the rotating frame description, we still only have 6 operators

Larger matrices take longer to diagonalise so it's important to try to reduce the size of the Hamiltonian by using the rotating frame
description if possible

k = 0

2N × 2N N

k +k −k k = 0 6N

k = [1]1
3

1
3



SW

The Horace-SpinW interface

How to use a SpinW model in Horace for fitting



SW HORACE RECAP

Defining models in Horace: a recap

Horace accepts a variety of functions to model data:

In all cases, immediately following the coordinates, Horace expects a vector of parameter values to be fitted

After this parameter values, Horace also accepts any other input variables as model constants which will be passed to the model

The fit functions generally only accept the s = fn(qh, qk, ql, en, pars) form for models, so energy convolution needs to be
done by the modelling code

y = fn(x1, x2, ..., xn, pars)

Functions operating directly on data coordinates (e.g.
gaussian peaks)

s = fn(qh, qk, ql, en, pars)

Model functions evaluated for each S(q,ω) ω

[w, s] = fn(qh, qk, ql, pars)

General model functionsS(q,ω)

S(q,ω)



SW SPINW RECAP

The SpinW spinwave method: a recap

In order to calculate the spin wave spectrum in SpinW, something like the following needs to be used:

Comparing with what Horace needs, we notice that:

The model (fittable) parameters are not set here, but much earlier in the definition of the model
We need the combination of both spinwave and sw_egrid to get a function of the form s = fn(qh, qk, ql, en, pars) which
Horace needs

Fortunately the wrapped model function is provided in SpinW: the method spinw.horace_sqw

spec = sw_obj.spinwave(hkl, 'hermit', false, 'formfact', true);
spec = sw_egrid(spec, 'component', 'Sperp', 'Evect', 0:0.05:10);



SW SPINW.HORACE_SQW

The spinw.horace_sqw method

horace_sqw has the same signature as a standard Horace function, horace_sqw(qh, qk, ql, en, pars, varargin)

So, it can be used directly in a Horace multifit_sqw call.

In order to define which model parameter is to be varied in the fit, you have to give horace_sqw a mat parameter which is a cell array of
the matrix names to be varied in the order they appear in the pars vector

Since the parameters of pars are scalars, if the matrix you refer to is not isotropic (e.g. it's not representing a Heisenberg interaction), a
special syntax to refer to which matrix element(s) needs to vary has to be used.

S(q,ω)



SW SPINW.HORACE_SQW

A simple example:

The vector [J K fwhm scalefactor] is the
parameters vector. We need to tell SpinW that it
corresponds to the Heisenberg nearest neighbour
interaction J_1 and the easy-place anisotropy K

Because J is isotropic, we can just give the matrix
name in mat

But, K only applies to the zz element, so we need to tell
SpinW that in mat

fwhm and scalefactor are parameters which are
added by horace_sqw to denote the energy FWHM and
intensity scale factor (may be omitted, in which case it
is taken to be unity and fixed)

The other (non-varying) parameters we pass to
multifit are just standard SpinW keyword arguments

J = 1.2;
K = 0.1;
tri = sw_model('triAF', J);
tri.addmatrix('label', 'K', 'value', diag([0 0 K]));
tri.addaniso('K');

fwhm = 0.75;
scalefactor = 1;
ws = cut_sqw(sqw_file, [0.05], [-0.1, 0.1], [-0.1, 0.1],
[0.5]);
fitobj = multifit_sqw(ws);
fitobj.set_fun(@tri.horace_sqw);
fitobj.set_pin({[J K fwhm scalefactor], 'mat', {'J_1',
'K(3,3)'}, ...
 'hermit', false, 'useFast', true, 'formfact', true});
ws_sim = fitobj.simulate();
[ws_fit, fit_dat] = fitobj.fit()



SW SPINW.HORACE_SQW

There are a few keyword arguments unique to horace_sqw

'useFast' - This tells horace_sqw to use a faster but slightly less accurate code than spinwave. In particular, this code achieves a
speed gain by:

Only calculating Sperp rather than full tensor
Only calculating magnon creation (positive energy / neutron energy loss) modes.
Ignoring twins

'partrans' - A function handle to transform the input parameters received from Horace before passing to SpinW
'coordtrans' - A matrix to transform the input coordinates received from Horace before passing to SpinW
'resfun' - This is tells horace_sqw what function to use for the energy convolution. Options are:

'gauss' - a gaussian (one parameter: fwhm)
'lor' - a lorentzian (one parameter: fwhm)
'voigt' - a pseudovoigt (two parameters: fwhm and lorentzian fraction)
'sho' - a damped harmonic oscilator (parameters: Gamma Temperature Amplitude)
A function handle to a function which will be accepted by Horace's disp2sqw method

horace_sqw appends the parameters needed by resfun to the end of the parameter vector and then adds a scale factor between the
data and calculation after that

Sαβ

4 × 4 (, , , ℏω)Qh Qk Ql



SW MATPARSER

The 'mat' argument

Horace expects a parameter vector, so we have to tell SpinW which parameter is which

In simple cases, just the name of the corresponding SpinW matrix, or a string denoting which single matrix element suffice

For more complicated cases, an additional parameter 'selector', a logical matrix needs to be used

This tells the matparser function which SpinW uses to decode the 'mat' argument which matrix elements the parameter corresponds to

'selector' is a array where is the number
of parameters

Each matrix denotes which elements of the
corresponding matrix in 'mat' goes with that
parameter

3 × 3

Dvec = [0.1 0.2 0.3];
swobj.addmatrix('label', 'DM', 'value', Dvec);
swobj.addcoupling('mat', 'DM', 'bond', 1);

sel(:,:,1) = [0 0 0; 0 0 1; 0 -1 0]; % Dx
sel(:,:,2) = [0 0 1; 0 0 0; -1 0 0]; % Dy
sel(:,:,3) = [0 1 0; -1 0 0; 0 0 0]; % Dz

fitobj.set_fun(@swobj.horace_sqw);
fitobj.set_pin({Dvec, 'mat', {'DM', 'DM', 'DM'}, ...
 'selector', sel, 'hermit', false})
fitobj.fit()

3 × 3 ×N N

3 × 3



SW

Example of Horace-SpinW integration

Modelling spin waves in Pr(Ca0.9Sr0.1)2Mn2O7
Download the scripts here:
This can be done by yourself if you are interested. Speak to one of us

pcsmo_eval.m



http://spinw.org/Ispra2019/matlab/pcsmo_eval.m

SW

Example of Horace-SpinW fitting

Fitting spin waves in bcc-Iron with SpinW and Horace
Download the scripts here: and data can be found
Scripts and data are on your USB sticks.

fe_fit.m here



http://spinw.org/Ispra2019/matlab/fe_fit.m
https://project.esss.dk/owncloud/index.php/s/fJSYfEYGqNahUUk

SW SpinW

Thank you!
Well done if you're still awake!



SW SpinW



