Linear Spin Wave Theory Review

5 minute recap on LSWT
Spin Chain Hamiltonian

Heisenberg Hamiltonian of a chain on Bravais lattice:

$$ \mathcal{H} = \sum_{i,d} J(d) \mathbf{S}_i \cdot \mathbf{S}_{i+d}$$

After substitution, changing to a rotating co-ordinate system and a bit of trigonometry we get:

$$ \begin{align} \mathcal{H} = & \sum_{i,j} J(\mathbf{d}) \left( S_i^\eta S_j^\eta + \sin (\mathbf{Q} \cdot \mathbf{d}_{i,j})(S_i^\mu S_j^\xi - S_i^\xi S_j^\eta \right) + \\ & \cos(\mathbf{Q}\cdot \mathbf{d}_{i,j}\left( S_i^\mu S_j^\mu + S_i^\xi S_j^\xi\right) \end{align}$$
Applying ladder operators

Spin state with a small field along the $z$ axis:

$$ \lvert n \rangle \equiv S, m = S -n $$

Ladder operators for a harmonic oscillator:

$$ \begin{align} a^+ \lvert n \rangle & = \sqrt{n+1} \lvert n + 1 \rangle \\ a \lvert n \rangle & = \sqrt{n} \lvert n -1 \rangle \\ \left[ a, a^+ \right] & = 1 \end{align}$$

Ladder operators for spin:

$$ \begin{align} S^- \lvert n \rangle & = \sqrt{2S}\sqrt{1 - \frac{n}{2S}}\sqrt{n+1} \lvert n + 1 \rangle \\ S^+ \lvert n \rangle & = \sqrt{2S}\sqrt{1 - \frac{n - 1}{2S}}\sqrt{n} \lvert n -1 \rangle \\ \end{align}$$

Assuming $\langle n \rangle \ll S$ the coupled harmonic oscillator is a good model. The excited states of the harmonic oscillator are magnons.


Spin wave approximation
Remembering ladder operators

Holstein–Primakoff transformation

Ladder operators for spin:

$$ \begin{align} S^- & = \sqrt{2S} a^+ \hat{f} \\ S^+ & = \sqrt{2S} \hat{f} a \end{align}$$

Where:

$$ \hat{f} = \sqrt{1 - \frac{n}{2S}} $$

Applying the transformation, $S$ in boson creation and annihilation operators:

$$ \begin{align} S_i^\eta & = \frac{1}{2}(S^+ + S^- ) = \sqrt{S/2}\hat{f}(a^+_i + a_i) \\ S_i^\mu & = -\frac{i}{2}(S^+ - S^- ) = \sqrt{S/2}\hat{f}(a^+_i - a_i) \\ S_i^\xi & = S - n_i = S - a_i^+a_i \end{align}$$
Quadratic form

So:

$$ S_i^\eta S_j^\eta = S/2 \hat{f}_i \hat{f}_j (a^+_i + a_i)(a^+_j + a_j) $$

etc...

We have a hamiltonian of boson operators which can be expanded in powers of $1/S$ to obtain:

$$ \mathcal{H} = E_0 + \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_3 + \mathcal{H}_4 ... $$

Where $E_0$ is the classical result which is derived in many textbooks:

$$ E_0 = S^2 \sum_{i, \mathbf{d}} J(\mathbf{d})\cos (\mathbf{Q} \cdot \mathbf{d}) $$
Quadratic form

1 operator term:

$$ \mathcal{H}_1 = S^{3/2} \sum_{i,j} \frac{i}{2} J(\mathbf{d}_{i,j}) \sin (\mathbf{Q} \cdot \mathbf{d}_{i,j})(a_i^+ - a_i + a_j - a_j^+) $$

2 operator term:

$$\begin{align} \mathcal{H}_2 = S \sum_{i,j} \frac{1}{2} J(\mathbf{d}_{i,j}) &( (1 - \cos (\mathbf{Q} \cdot \mathbf{d}_{i,j}))(a_ia_j + a_ia_j) \\ & + (1 + \cos (\mathbf{Q} \cdot \mathbf{d}_{i,j}))(a_ia_j^+ + a_i^+a_j) \\ & - 2\cos (\mathbf{Q} \cdot \mathbf{d}_{i,j})(a_i^+a_i + a_j^+a_j) ) \end{align}$$

3 operator term:

  • Non-zero in non-collinear structures
  • Can change the ground state

4 operator term:

  • Renormalizes the magnon dispersion
  • Gives finite magnon lifetime
Diagonalization of the quadratic form

Luckily, $\mathcal{H}_2$ can be written in matrix form:

$$\mathcal{H}_2 = \sum_\mathbf{k} \mathbf{x}^\dagger H(\mathbf{k}) \mathbf{x} $$

Where $\mathbf{x}$ is a vector of Boson operators:

$$ \mathbf{x} = \begin{bmatrix} a_\mathbf{k} \\ a_{-\mathbf{k}}^+\end{bmatrix}$$

And the matrix of the Hamiltonian has the form:

$$ H = \begin{bmatrix} A & B \\ B & A \end{bmatrix} $$
$$\begin{align} A & = J(\mathbf{k}) + J(\mathbf{k} + \mathbf{Q})/2 + J(\mathbf{k} - \mathbf{Q})/2 - 2J(\mathbf{Q}) \\ B & = J(\mathbf{k}) - J(\mathbf{k} + \mathbf{Q})/2 - J(\mathbf{k} - \mathbf{Q})/2 \end{align}$$
Diagonalization of the quadratic form

In Bogoliubov method, we define new operator $b$ with the following transformation:

$$ \begin{align} b & = ua + va^+ \\ b^+ & = ua^+ +va \end{align}$$

The new operator has to fulfill the commutation relations:

$$ \begin{align} [b, b^+] & = 1 \\ u^2 + v^2 & = 1 \end{align}$$

With the right parameter choice:

$$ \mathcal{H}_2 = \sum_\mathbf{k} \omega_\mathbf{k} \left( b^+b + \frac{1}{2} \right) $$

And the spin wave dispersion:

$$ \omega_\mathbf{k} = \sqrt{A^2 - B^2} $$

The above calculation is equivalent to solving the eigenvalue problem of $gH$, where $g = [x, x^\dagger]$ commutator matrix.

Spin-spin correlation function

Now we have $\omega_\mathbf{k}$ and half the story. Remember for neutron scattering:


$$ \frac{d^2\sigma}{d\Omega dE} = C \cdot F^2(\mathbf{K}) \sum_{\alpha , \beta}(\delta_{\alpha , \beta} - \hat{k}_\alpha\hat{k}_\beta ) (gSg^T)^{\alpha , \beta} (\mathbf{k}, \omega) $$

With the correlation function:


$$ S^{\alpha \beta}(\mathbf{k},\omega) = \frac{1}{2\pi\hbar}\int dt e^{-i \omega t} \left< S^\alpha (\mathbf{k}, 0) S^\beta (-\mathbf{k}, t) \right> $$