In the previous section we looked at the case of a single Ferromagnetic $J$. But what happens when we have $J_{i,j}$ on a non-trivial lattice?
Introduce the fourier transform the spin:
So.....
Since $\sum_i e^{i (\mathbf{k} + \mathbf{\acute{k}}) \cdot \mathbf{r}_i} = N \delta_{(k+\acute{k},0)} $
$$\begin{align} \mathcal{H} & = -\frac{1}{2} \sum_{k} \mathbf{F}_k \cdot \mathbf{F}_{-k} \sum_{d} e^{-i \mathbf{k} \cdot \mathbf{d}} J(\mathbf{d}) \\ & = -\frac{1}{2} \sum_{k} \mathbf{F}_k \cdot \mathbf{F}_{-k} J(\mathbf{k}) \end{align}$$So $J(k)$ is real and even since $J(\mathbf{d})$ is real and even. Forcing $\mathbf{F}_k$ to respect the normalisation condition of $\mathbf{S}_i$:
Let $\mathbf{Q}$ be a single wavevector which maximises $J(k)$. Minimising $\mathcal{H}$ to get the ground-state we have 2 cases:
Since the R.H.S must be independent of $\mathbf{r}_i$ we get:
$$ \mathbf{S}_Q \cdot \mathbf{S}_Q = \mathbf{S}_{-Q} \cdot \mathbf{S}_{-Q} $$That looks simple......
remember $\mathbf{S}_Q$ is a Fourier transform
$$ \mathbf{S}_Q = \mathbf{u} + i\mathbf{v}$$After some replacement, we find that $\mathbf{u}$ and $\mathbf{v}$ are Orthoganal vectors of equal magnitude. So
$$ S^2 = \frac{1}{N} 2 \mathbf{S}_Q \cdot \mathbf{S}_{-Q} = \frac{2}{N} (\mathbf{u}^2 + \mathbf{v}^2)$$Giving:
$$ \mathbf{u}^2 = \mathbf{v}^2 = \frac{NS^2}{4}$$And a ground state of:
$$\mathcal{H}_0 = -\frac{1}{2} J(\mathbf{Q}) \mathbf{S}_Q \cdot \mathbf{S}_{-Q} -\frac{1}{2} J(\mathbf{-Q}) \mathbf{S}_{-Q} \cdot \mathbf{S}_{Q} = -J(\mathbf{Q})\frac{NS^2}{2}$$Normalising $\mathbf{u}$ and $\mathbf{v}$ we get:
$$\mathbf{S}_i = S\left( \mathbf{\hat{u}}\cos (\mathbf{Q} \cdot \mathbf{r}) - \mathbf{\hat{v}}\sin (\mathbf{Q} \cdot \mathbf{r}) \right)$$So:
Choosing the points $\mathbf{\hat{x}}=\mathbf{\hat{u}}$ and $\mathbf{\hat{y}}=-\mathbf{\hat{v}}$ we see:
$$ \begin{align} S_i^x & = S\cos(\mathbf{Q} \cdot \mathbf{r}) \\ S_i^y & = S\sin(\mathbf{Q} \cdot \mathbf{r}) \\ S_i^z & = 0 \end{align}$$A helical state which is coplanar but not colinear.
We have proved Luttinger-Tisza theory
The classical ground state of a Heisenberg Hamiltonian on the Bravais lattice is always a single-Q spiral.
Luttinger-Tisza theory
Important points to note:
We introduced the concept of the rotating coordinate system in the helical subsection. Choosing a suitable $\mathbf{\hat{u}}$ and $\mathbf{\hat{v}}$:
Where the rotation angle:
We derived this previously and after substitution and a bit of trigonometry:
$$ \begin{align} \mathcal{H} = & \sum_{i,j} J(\mathbf{d}) \left( S_i^\eta S_j^\eta + \sin (\mathbf{Q} \cdot \mathbf{d}_{i,j})(S_i^\mu S_j^\xi - S_i^\xi S_j^\eta \right) + \\ & \cos(\mathbf{Q}\cdot \mathbf{d}_{i,j}\left( S_i^\mu S_j^\mu + S_i^\xi S_j^\xi\right) \end{align}$$Spin state with a small field along the $z$ axis:
$$ \lvert n \rangle \equiv S, m = S -n $$Ladder operators for a harmonic oscillator:
$$ \begin{align} a^+ \lvert n \rangle & = \sqrt{n+1} \lvert n + 1 \rangle \\ a \lvert n \rangle & = \sqrt{n} \lvert n -1 \rangle \\ \left[ a, a^+ \right] & = 1 \end{align}$$Ladder operators for spin:
$$ \begin{align} S^- \lvert n \rangle & = \sqrt{2S}\sqrt{1 - \frac{n}{2S}}\sqrt{n+1} \lvert n + 1 \rangle \\ S^+ \lvert n \rangle & = \sqrt{2S}\sqrt{1 - \frac{n - 1}{2S}}\sqrt{n} \lvert n -1 \rangle \\ \end{align}$$Assuming $\langle n \rangle \ll S$ the coupled harmonic oscillator is a good model. The excited states of the harmonic oscillator are magnons.
Spin wave approximation
Ladder operators for spin:
$$ \begin{align} S^- & = \sqrt{2S} a^+ \hat{f} \\ S^+ & = \sqrt{2S} \hat{f} a \end{align}$$Where:
$$ \hat{f} = \sqrt{1 - \frac{n}{2S}} $$Applying the transormation, $S$ in boson creation and annihilation operators:
$$ \begin{align} S_i^\eta & = \frac{1}{2}(S^+ + S^- ) = \sqrt{S/2}\hat{f}(a^+_i + a_i) \\ S_i^\mu & = -\frac{i}{2}(S^+ - S^- ) = \sqrt{S/2}\hat{f}(a^+_i - a_i) \\ S_i^\xi & = S - n_i = S - a_i^+a_i \end{align}$$So:
$$ S_i^\eta S_j^\eta = S/2 \hat{f}_i \hat{f}_j (a^+_i + a_i)(a^+_j + a_j) $$etc...
We have a hamiltonian of boson operators which can be expanded in powers of $1/S$ to obtain:
$$ \mathcal{H} = E_0 + \mathcal{H}_1 + \mathcal{H}_2 + \mathcal{H}_3 + \mathcal{H}_4 ... $$Where $E_0$ is the classical result which we derived from the spiral example:
$$ E_0 = S^2 \sum_{i, \mathbf{d}} J(\mathbf{d})\cos (\mathbf{Q} \cdot \mathbf{d}) $$1 operator term:
$$ \mathcal{H}_1 = S^{3/2} \sum_{i,j} \frac{i}{2} J(\mathbf{d}_{i,j}) \sin (\mathbf{Q} \cdot \mathbf{d}_{i,j})(a_i^+ - a_i + a_j - a_j^+) $$2 operator term:
$$\begin{align} \mathcal{H}_2 = S \sum_{i,j} \frac{1}{2} J(\mathbf{d}_{i,j}) &( (1 - \cos (\mathbf{Q} \cdot \mathbf{d}_{i,j}))(a_ia_j + a_ia_j) \\ & + (1 + \cos (\mathbf{Q} \cdot \mathbf{d}_{i,j}))(a_ia_j^+ + a_i^+a_j) \\ & - 2\cos (\mathbf{Q} \cdot \mathbf{d}_{i,j})(a_i^+a_i + a_j^+a_j) ) \end{align}$$3 operator term:
4 operator term:
We have a mix of operators on the different sites and we need to separate them.
Bring on more Fourier transforms:
$$\begin{align} a_i = \frac{1}{\sqrt{N}}\sum_{k} a_k e^{i \mathbf{k}\cdot\mathbf{r}_i} & , a_i^+ = \frac{1}{\sqrt{N}}\sum_{q} a_k^+ e^{-i \mathbf{k}\cdot\mathbf{r}_i}\\ a_k = \frac{1}{\sqrt{N}}\sum_{i} a_i e^{-i \mathbf{k}\cdot\mathbf{r}_i} & , a_k^+ = \frac{1}{\sqrt{N}}\sum_{i} a_i^+ e^{i \mathbf{k}\cdot\mathbf{r}_i} \end{align}$$Where the usual Boson commutator relations are obeyed.
After substitution:
$$ \begin{align} \mathcal{H}_2 & = \frac{S}{2} \sum_\mathbf{k} \left( J(\mathbf{k}) - \frac{J(\mathbf{k} + \mathbf{Q}) + J(\mathbf{k} - \mathbf{Q})}{2} \right) \left( a_\mathbf{k}a_\mathbf{-k} + a_\mathbf{k}^+a_\mathbf{-k}^+\right) \\ & + \left( J(\mathbf{k}) + \frac{J(\mathbf{k} + \mathbf{Q}) + J(\mathbf{k} - \mathbf{Q})}{2} \right) \left( a_\mathbf{k}a_\mathbf{k}^+ + a_\mathbf{k}^+a_\mathbf{k}\right) - 4J(\mathbf{Q})a_\mathbf{k}^+a_\mathbf{k} \end{align}$$Luckily, $\mathcal{H}_2$ can now be written in matrix form:
$$\mathcal{H}_2 = \sum_\mathbf{k} \mathbf{x}^\dagger H(\mathbf{k}) \mathbf{x} $$Where $\mathbf{x}$ is a vector of Boson operators:
$$ \mathbf{x} = \begin{bmatrix} a_\mathbf{k} \\ a_{-\mathbf{k}}^+\end{bmatrix}$$And the matrix of the Hamiltonian has the form:
$$ H = \begin{bmatrix} A & B \\ B & A \end{bmatrix} $$In Bogoliubov method, we define new operator $b$ with the following transformation:
$$ \begin{align} b & = ua + va^+ \\ b^+ & = ua^+ +va \end{align}$$The new operator has to fulfill the commutation relations:
$$ \begin{align} [b, b^+] & = 1 \\ u^2 + v^2 & = 1 \end{align}$$With the right parameter choice:
$$ \mathcal{H}_2 = \sum_\mathbf{k} \omega_\mathbf{k} \left( b^+b + \frac{1}{2} \right) $$And the spin wave dispersion:
$$ \omega_\mathbf{k} = \sqrt{A^2 - B^2} $$The above calculation is equivalent to solving the eigenvalue problem of $gH$, where $g = [x, x^\dagger]$ commutator matrix.
Now we have $\omega_\mathbf{k}$ and half the story. Remember for neutron scattering:
With the correlation function:
Correlation function:
Converting into $b$ and $b^+$ operators, taking the Fourier transform in time:
$$ S^{xx}(\omega,\mathbf{k}) = S \frac{A_\mathbf{k} - B_\mathbf{k}}{\omega_\mathbf{k}} \cdot \delta (\omega - \omega_\mathbf{k}) \cdot (n_\omega + 1) $$Using
Correlation function:
Converting into $b$ and $b^+$ operators, taking the Fourier transform in time. The $\cos (\mathbf{Q} \cdot \mathbf{d}_{i,j})$ brings in a $\pm \mathbf{Q}$ shift in reciprocal space:
$$ S^{yy}(\omega,\mathbf{k}) = S^{zz}(\omega,\mathbf{k}) = S \frac{1}{4} \left( S^{\xi\xi} (\omega , \mathbf{k} - \mathbf{Q}) + S^{\xi\xi} (\omega , \mathbf{k} + \mathbf{Q}) \right) $$Where the correlation function in the rotating frame:
There are 3 bond vectors given by:
The exchange couplings are given by:
$$ J(\mathbf{k}) = \sum_{i=1}^3 J\cos (\mathbf{k} \cdot \mathbf{e}_i ) $$The ground-state energy is given by:
Where $A$ and $B$ have been simplified for this case.
The classical ground state is given by minimising $J(\mathbf{k})$. (Note, by notation in some books it's maximising).
$$ \mathbf{Q} = (1/3, 1/3) $$By looking at the definition of $A$ and $B$ we can see that there are 3 spinwave modes.
The three spin wave modes are: $S(\mathbf{k},\omega)$ and $S(\mathbf{k}\pm\mathbf{Q},\omega)$ due to the incommensurate ordering wave vector.
Using SpinW we can plot the spin polarisation of each mode
Goldstone modes appear due to spontaneous breaking of continuous symmetry.