General spin Hamiltonian
Where:
As we've seen, we need a lot of rotation matrices to convert vectors and reference frames
Rotation, inversion and reflection operations can be described by a multiplication with an orthogonal matrix $R$.
The $R$ transformation can be applied to the basis vectors of the coordinate system or to the objects themselves using $R^{−1}=R^T$.
To exactly (in an LSWT sense) solve the general Hamiltonian the magnetic structure has to be transformed into a ferromagnet. This is possible for single-k magnetic structures (with additional $k=0$ component). For multi-k magnetic structures an approximate magnetic supercell has to be defined.
LSWT solution of the general spin Hamiltonian
So we have the following 'exactly' solvable magnetic structures:
The local spin rotation is now:
$$ S_{nj}^{\alpha\prime} = \sum_\mu R_j^{\prime\alpha\mu} S_{nj}^{\prime\prime\mu} $$Which can be rewritten as a multiplication with a complex and a real unit vector:
$$ \begin{align} \mathbf{u}_j^\alpha & = R_j^{\prime\alpha 1} + i R_j^{\prime\alpha 2} \\ \mathbf{v}_j^\alpha & = R_j^{\prime\alpha 3} \end{align}$$Where:
Now lets look at the symmetries of the Hamiltonian.
Lattice periodicity:
$$J_{mi,nj} = J_{ij}(\mathbf{d})$$Invariance under exchange of two spins:
$$J_{ij}(\mathbf{d}) = J_{ji}^T(-\mathbf{d})$$Invariance under the $R_n$ rotations:
$$J_{ij}(\mathbf{d}) = R^T_n J_{ij}(\mathbf{d}) R_n, \; n = 1,2,3,...$$Fourier-transform of $J$:
$$J_{ij}(\mathbf{k}) = \sum_\mathbf{d} J_{ij}(\mathbf{d}) e^{-i \mathbf{k} \cdot \mathbf{d}}$$And the identities:
$$\begin{align} J_{ij}(\mathbf{k}) & = \overline{J_{ij}(-\mathbf{k})} \\ J_{ij}(\mathbf{k}) & = \overline{J_{ji}^T(\mathbf{k})} \end{align}$$How does this effect the Boson expansion of the spin ladder operators:
$$ \begin{align} {S_{nj}^{\prime\prime}}^+ & = \sqrt{2S_j} b_{nj},\\ {S_{nj}^{\prime\prime}}^- & = \sqrt{2S_j} b^{\dagger}_{nj},\\ {S_{nj}^{\prime\prime}}^Z & = S_j - b_{nj}^{\dagger}b_{nj} \end{align}$$Bosonic commutator
$$ \left[b_{mi}, b^{\dagger}_{nj} \right] = \delta_{mn}\delta_{ij} $$Spin vector operator:
$$ \mathbf{S}^{\prime}_{nj} = \sqrt{\frac{S_j}{2}}\left( \bar{\mathbf{u}}b_{nj} + \mathbf{u}_jb_{nj}^{\dagger} \right) + \mathbf{v}_j \left( S_j - b_{nj}^{\dagger} b_{nj}\right) $$Now let's apply all of this to the Hamiltonian.
Hamiltonian in the rotating coordinate system:
Note that using the rotational symmetry of the Hamiltonian:
After transforming the operators from real space to reciprocal space
$$ b_{mi} = \frac{1}{\sqrt{N}}\sum_{\mathbf{k} \in \text{B.Z}} b_i (\mathbf{k} ) e^{i\mathbf{k}\cdot\mathbf{r}_m} $$The leading term for excitations is quadratic:
$$ H = \sum_{\mathbf{k} \in \text{B.Z}} \mathbf{x}^\dagger(\mathbf{k})h(\mathbf{k})\mathbf{x}(\mathbf{k}) $$Where $\mathbf{x}(\mathbf{k})$ is a vector of spin operators:
$$ \mathbf{x}(\mathbf{k}) = \left[ b_1(\mathbf{k}),...b_N(\mathbf{k}),b_1^\dagger(-\mathbf{k}),...,b_N^\dagger(-\mathbf{k}) \right]^T $$Note! the length of $\mathbf{x}(\mathbf{k})$ is $2N$ where N is number of magnetic atoms in the unit cell
Which is in matrix form:
$$ h(\mathbf{k}) = \begin{bmatrix} A(\mathbf{k})-C & B(\mathbf{k}) \\ B^\dagger(\mathbf{k}) & \bar{A}(-\mathbf{k})-C \end{bmatrix} $$Where:
$$ \begin{align} A(\mathbf{k})^{i,j} & = \frac{\sqrt{S_i S_j}}{2}\mathbf{u}_i^T J_{ij}^\prime (-\mathbf{k})\bar{\mathbf{u}}_j , \\ B(\mathbf{k})^{i,j} & = \frac{\sqrt{S_i S_j}}{2}\mathbf{u}_i^T J_{ij}^\prime (-\mathbf{k})\mathbf{u}_j , \\ C(\mathbf{k})^{i,j} & = \delta_{ij}\sum_l S_l \mathbf{v}^T J_{il}^\prime(0)\mathbf{v}_l \end{align}$$Note: $A(\mathbf{k})$ is Hermitian and C is real
The Zeeman term is given by:
To diagonalize the Hamiltonian we need a $T$ linear transformation $x_i = \sum_j T_{ij} x_j^\prime $ which fulfills:
Where:
$$ g = \begin{bmatrix}1 & 0 \\ 0 & -1 \end{bmatrix} $$We will use the method of Colpa which include the Cholesky decomposition of $h(\mathbf{k})$ and solving an eigenvalue problem of a Hermitian matrix.
Result:
General formula:
$$ S^{\prime\alpha\beta}(\mathbf{k},\omega) = \frac{1}{2N}\sum_{i=1}^{2N} S^{\prime\alpha\beta}_i \delta(\omega \pm \omega_i) \left( n(\omega) + \frac{1}{2}(1\pm 1) \right) $$Boson population is described by the Bose statistics:
$$ n(\omega_i) = \frac{1}{e^{\hbar\omega_i / k_B T} - 1} $$The dimensions of $S^{\prime\alpha\beta}$ are $3 \times 3 \times 2N$ for each $\mathbf{k}$ point
Transforming from rotating frame to the laboratory frame:
$$ \left< \mathbf{S}_{mi} \mathbf{S}_{nj}^T (\tau) \right> = \left< R_m \mathbf{S}_{mi}^\prime \mathbf{S}_{nj}^{\prime T} (\tau) R_n^T \right> = \left< \mathbf{S}_{mi}^\prime \mathbf{S}_{nj}^{\prime T} (\tau) \right> R^T_{n-m} $$Using Rodriguez’s formula:
$$ R(\mathbf{Q}\cdot\mathbf{r}_n) = e^{i\mathbf{Q}\cdot\mathbf{r}_n}R_1 + e^{-i\mathbf{Q}\cdot\mathbf{r}_n}\bar{R}_1 + R_2 $$Correlation function:
$$ S(\mathbf{k}, \omega) = S^{\prime}(\mathbf{k},\omega)R_2 + S^{\prime}(\mathbf{k} + \mathbf{Q},\omega)R_1 + S^{\prime}(\mathbf{k} - \mathbf{Q},\omega)\bar{R}_1 $$In $\mathbf{Q} \neq 0 $ magnetic structure generally $3N$ spin wave modes can be observed: $\omega (\mathbf{k})$ and $\omega (\mathbf{k}\pm \mathbf{Q})$. Dimensions of $S^{\alpha\beta}$ is $3 \times 3 \times 3 \times 2N$ for each $\mathbf{k}$ point.