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A crash course on SpinW
SpinW (spin-double-u) is a MATLAB library that can optimize magnetic structures using mean field
theory and calculate spin wave dispersion and spin-spin correlation function for complex crystal and
magnetic structures.
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SW SPIN WAVES

Spin waves

Spin waves (magnons) are propagating disturbances of an ordered magnetic lattice

i = 0

k = 0

The magnetic ordering arises due to the exchange interactions  between electrons on atomic sites  and .

The dispersion relation  of spin waves can be measured by inelastic neutron scattering, and directly depends on the exchange
interactions

Spin waves are deviations from an ordered state, so in principle can only be seen in the ordered state
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SW LINEAR SPIN WAVE THEORY

Linear Spin Wave Theory
We'll now derive the spin wave dispersion for a ferromagnet in linear spin wave theory

The steps involved in the derivation are:

1. Beginning with a spin Hamiltonian, express the spin operator vector  as the ladder operators 

2. Map the raising (lowering) operators to bosonic anihilation (creation) operators  ( ) via the Holstein-Primakoff transformation.

3. The transformed Hamiltonian is a series expansion in powers of , but in linear spin wave theory we take only the terms which are
linear in .

4. Fourier transform the Hamiltonian.

5. Diagonalise the Hamiltonian, ensuring that the commutation relation of the bosonic operators are respected (for two-sublattice
system such as antiferromagnetic, the Bogoliubov transformation can be used for this purpose).
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SW LINEAR SPIN WAVE THEORY

Heisenberg Hamiltonian:

The Hamiltonian of an ordered magnet can be expressed in terms of the spin operators for site , .

For example, the Heisenberg Hamiltonian is:

where  is the exchange interaction with the indices  and  running over magnetic atoms within a single magnetic unit cell, and  and 
 label different unit cells.

 is the spin operator for site , which can be re-expressed in terms of the ladder operators :

since  so 
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−

j Ŝ
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SW LINEAR SPIN WAVE THEORY

Holstein-Primakoff transformation

To determine the magnons (magnetic normal modes), we map the excitations to a simple harmonic operator

The ordered ground state is the state with the maximum azimuthal quantum number , and the action of the ladder operator is:

We now map the ladder operators to boson creation and anihilation operators  and :

mapping also the ordered state  to the vacuum state , such that the action of  is analogous to 

So, substituting  and re-arranging the ladder operator terms:

In linear spin wave theory we ignore the terms in red
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SW LINEAR SPIN WAVE THEORY

Using the identities  and  we have the following mappings

So the Heisenberg Hamiltonian (ignoring terms which are not linear in ) is now:
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SW LINEAR SPIN WAVE THEORY

Fourier transformation

In the expression for the spin Hamiltonian we have a sum over all magnetic sites. This can be simplified to just sites  and  within the
magnetic unit cell by Fourier transforming the Hamiltonian. The Fourier transform of the Holstein-Primakoff operator is:

Let us take one term from the Hamiltonian, ; its Fourier transform is:

The periodicity of the crystal implies that the exchange interaction is translationally invariant such that  where  so
the Fourier transform becomes:

where the terms in the square brackets is the Fourier transform of the exchange interactions  where the indices  label only sites
within the magnetic unit cell. We now use the identity  to obtain:
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SW LINEAR SPIN WAVE THEORY

So the Fourier transformed Hamiltonian becomes:

Which can be expressed as a matrix equation:

where the square brackets denote a block matrix and we have omitted the  indices on the bosonic operators.

The off-diagonal blocks are only zero in this case because we are using the Heisenberg Hamiltonian. For anisotropic Hamiltonians (e.g. 
or Dzyaloshinskii-Moriya interactions), these blocks will not be zero
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SW LINEAR SPIN WAVE THEORY

Setting:

The Hamiltonian is:

With the matrix  as shown previously and  indicates a complex conjugate transpose.

At each  the eigenvalues of the matrix  will be the magnon energies  and the eigenvalues can be used to calculate the spin-spin
correlation function and hence the neutron scattering cross-section.
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SW LINEAR SPIN WAVE THEORY

Heisenberg Ferromagnet

For a ferromagnet, there is only one magnetic atom in the unit cell, so
the Hamiltonian is diagonal already:

The Fourier transform is just:

So we obtain 

In general, however, the Hamiltonian is not diagonal and so must be
diagonalised.

This can be done using the Bogoliubov transformation for an
antiferromagnet

SpinW uses a more general method due to Colpa, as explained in the
SpinW paper
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SW SPIN-SPIN CORRELATION FUNCTION

Now we have  and half the story. Remember for neutron scattering:

 

With the correlation function:

 

 is related to the Fourier transform of the eigenvectors of the Hamiltonian at .
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SW LINEAR SPIN WAVE THEORY

Summary

Linear spin wave theory calculations requires:

The exchange interactions
The magnetic structure

It expands the spin ladder operators as a power series in bosonic creation/anihilation operators, keeping only linear terms

For each momentum transfer  a Hamiltonian matrix has to be diagonalised to obtain the magnon energies and spin-spin correlation
functions

The size of the matrix is proportional to the number of magnetic atoms in the unit cell

So, larger (or more complex) magnetic structures require more memory; and more -points require longer processing time
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SW

General spin Hamiltonian - SpinW

How does SpinW work?
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SW GENERAL HAMILTONIAN

General spin Hamiltonian:

 
With the anisotropic and antisymmetric (Dzyaloshinskii-Moriya) exchange interactions: 
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SW SPINW FEATURES

Key Points:
 
Non-Bravais lattice 

Additional rotation on every site within unit cell  
General interactions 

Multi-q magnetic ground states are possible

 
SpinW

Solves the general spin Hamiltonian
Calculates spin-spin correlation function
Numerical and symbolical
Can apply crystal symmetry operators on the Hamiltonian - Solving single-q magnetic structures
Solves multi-q magnetic structures on a magnetic supercell
Open source, runs on MATLAB and now python
More information: 
Download from: 

http://www.spinw.org
https://www.github.com/spinw/spinw



http://www.spinw.org/
https://www.github.com/spinw/spinw


SW PREREQUISITES

Operating System
All modern OS's are supported

MATLAB
All versions after R2014b are fully supported.
OPTIONAL: Symbolic Toolbox
OPTIONAL: Parallel Computing Toolbox
 

Notes
More memory is needed if you have more magnetic atoms
More q-points takes longer
Python is now technically supported but will not be covered here. See 
 

Now lets install

https://www.github.com/spinw/PySpinW



https://www.github.com/spinw/PySpinW


SW INSTALLING LATEST RELEASES

Get the code - The manual way:
SpinW is available at: 

 

Steps:
Unzip the archive into your preferred directory
Open MATLAB and run install_spinw from inside this directory
Verify with s = spinw;
 

Updating:
I am trying to make releases 2-3 times a year. It's always nice to be on the latest code! 
There is a self update function sw_update 
This retrieves and installs the package from the link above.

Developing:
If you want to help develop a feature and contribute, please git clone  and create a pull request
(to development branch)

https://www.github.com/spinw/spinw/releases/latest

https://www.github.com/spinw/spinw.git



https://www.github.com/spinw/spinw/releases/latest
https://www.github.com/spinw/spinw/


SW INSTALLING VIA MATLAB

Using the MATLAB package - The easy way
SpinW is now a MATALB add-on and can be downloaded directly from Mathworks.

Then search for SpinW and hit install.

Verify with s = spinw;

Updating:

Add-Ons  Check for updates  Update

NOTE
This version may not correspond to the sw_update version!

→ →





SW GETTING HELP

Function help
For any function that starts with sw_* use: 
help sw_*

SpinW class methods
for spinw class methods use:  
help spinw.function_name. 
For help on plotting commands, use: 
help swplot.

Online Documentation
All help can be found on  or http://www.spinw.org https://spinw.github.io/spinwdoc



http://www.spinw.org/
https://spinw.github.io/spinwdoc


SW

Crash course in MATLAB

SpinW runs in MATLAB and Python, but today we will be focusing on MATLAB.

The concepts.... Arrays, Indexing, Objects





SW ARRAYS - NUMERIC

They are created using square brackets – comma or space separation for columns in a row, semi-colon separation for new rows, higher
dimensions using indexing / repmat command

1D arrays

 

2D arrays

 

3D arrays

w_1row = [1,2,3]; 
w_1col = [1;2;3]; 
w_1col_to_1row = [1;2;3]’; 

w_rowcol = [1,2,3;4,5,6];

w3d = repmat(w_rowcol,[1,1,3]) 
w3d(:,:,1) = w_rowcol;  w3d(:,:,2) = w_rowcol+2; 





SW ARRAYS - STRINGS

Creating Strings

Strings arrays are concatenated similar to numeric arrays....

my_string = ‘hello world’;

my_string2 = [my_string, ’ hello everyone’];





SW ARRAYS - STRUCTURED

Structure arrays provide a way of storing more general information, referenced by fields.

 

w = struct(); 
w.tom = [1,2,3]; 
w.dick = ‘hello world’; 
w.harry = [4,5,6,7;8,9,10,11]; 





SW ARRAYS - CELLS

Cell arrays are another generic data storage mechanism, with a matrix-like structure.

 

 

Note that the cell array is described by a curly bracket, not a square bracket!

cell1 = {[1,2,3], ’hello_world’, [4,5,6;7,8,9]}; 
cell2 = {[1,23], ’hello_world’; [4,5,6;7,8,9], cell1}; 





SW INDEXING

Arrays can be indexed. Note that the ordering is the reverse to Python!.

 

So w1(3) = 5 etc.

So wcell{3} = [1,2,3] etc.

In 2D:

So w2(2,3) = 6

w1 = [1,3,5,7]

wcell = {‘hello’,’world’,[1,2,3]}

w2 = [1,2,3; 4,5,6]

w2(:,[1:2]) = [1,2;4,5] 
w2(:,[1,3]) = [1,3;4,6] 
                





SW OBJECTS AND METHODS

Objects are data structures with defined properties, and internal self-consistency checks.

Cell arrays, structure arrays etc. are examples of Matlab’s built-in objects.
You can define your own, which is what we have done with SpinW  

You create a SpinW object with:

 

Methods are the functions that work on defined objects.

SpinW has many methods. e.g.

s = spinw();

s.plot()





SW OBJECTS AND METHODS

Getting help for objects and methods
To find all the methods working on an object, use the methods function which the name of the object class.

 

Get help if you already know the name of a particular method for an object class e.g. addatom:

methods(spinw)

help spinw/addatom 
doc spinw/addatom





SW GETTING HELP

Function help
For any function that starts with sw_* use: 
help sw_*

SpinW class methods
for spinw class methods use:  
help spinw.function_name. 
For help on plotting commands, use: 
help swplot.

Online Documentation
All help can be found on  or http://www.spinw.org https://spinw.github.io/spinwdoc



http://www.spinw.org/
https://spinw.github.io/spinwdoc


SW

For the things we have to learn before we can
do them, we learn by doing them.

Aristotle
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SW

Introductory Tutorials

Getting started in SpinW - Referring to Kim Lefmanns talk for spinwave theory.





SW SPINW WORKFLOW

To do a calculation, you need 3 parts. Crystal structure, exchange structure, magnetic structure





SW

The FM spin chain - A recap

Download the script here: sw_tutorial_00.m



http://spinw.org/Tartu2019/matlab/sw_tutorial_00.m


SW

Excitations on a triangular lattice

Download the script here: sw_tutorial_01.m



http://spinw.org/Tartu2019/matlab/sw_tutorial_01.m


SW

 magnetic structure

Let's try this with a  magnetic structure

k = [1 1 0]/3

k = [1 1 0]/3





SW CREATING THE LATTICE - (CRYSTAL STRUCTURE)

Creating the lattice

We have:

Created a SpinW object
Generated a lattice of , ,  and , 

In the plot window, you can zoom with the mouse wheel, pan by pressing the Ctrl button while dragging. Change the plot range and view
direction by pressing the corresponding button on the top.

Questions:

What is the default symmetry and what does it mean?

tri = spinw; 
tri.genlattice('lat_const',[3 3 4],'angled',[90 90 120]) 
plot(tri)

a = 3Å b = 3Å c = 4Å α = β = 90∘ γ = 120∘





SW ADDING ATOMS

Adding atoms

We have added an magnetic Cr  at position  with spin 

tri.addatom('r',[0 0 0],'S',3/2,'label','MCr3') 
plot(tri)

3+ [0, 0, 0] S = 3/2
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SW SPIN HAMILTONIAN - (EXCHANGE STRUCTURE)

Creating the Spin-Hamiltonian
We create an antiferromagnetic first neighbor Hamiltonian plus easy plane single ion anisotropy

Where there is only one interaction of value J = 1 and easy plane single ion anisotropy A = 0.1

H = ⋅ ⋅ + ⋅ ⋅∑
mi,nj

S
T
mi Jmi Snj ∑

mi

S
T
mi Ai Smi
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SW SPIN HAMILTONIAN - (EXCHANGE STRUCTURE)

Creating the Spin-Hamiltonian
We create implement this in code with:

We then assign these matrices to bonds:

Red ellipsoids represent the single ion anisotropy on the plot (equienergetic surface)

Questions:

What have we done in each code part? 
Examine the plot and test different values of A0 with different signs

A0 = 0.1; 
J1 = 1; 
tri.addmatrix('label','J1','value',J1) 
tri.addmatrix('label','A','value',[0 0 0;0 0 0;0 0 A0])

tri.gencoupling 
tri.addcoupling('mat','J1','bond',1) 
tri.addaniso('A')





SW MAGNETIC STRUCTURE

Creating the magnetic structure:

We have seen the ground state magnetic structure of the above Hamltonian is a spiral, with propagation vector of . 
We define the plane of the spiral as the  plane

Careful: the given spin vector is column vector!

Questions:

What are the angles between nearest neighbor moments?

(1/3,1/3,0)

ab

tri.genmagstr('mode', 'helical', 'S', [1;0;0], 'k',[1/3 1/3 0], 'n', [0 0 1], 'nExt', [1 1 1]) 
plot(tri, 'range', [3 3 1/2], 'cellMode', 'inside', 'magColor', 'red')





SW SPIN WAVE DISPERSION - (USING LSWT)

Calculating the spin wave dispersion

We calculate the spin wave dispersion along the  high symmetry direction

 
Questions:

How many modes are there and why? 
What does the red line mean? 
Did you get any warning?

(H,H, 0)

spec = tri.spinwave({[0 0 0] [1 1 0] 500}, 'hermit', false); 
figure 
sw_plotspec(spec, 'mode', 'disp', 'imag', true, 'colormap', [0 0 0], 'colorbar', false) 
axis([0 1 0 5])





SW SPIN-SPIN CORRELATION FUNCTIONS

Calculating the spin-spin correlations
The spin-spin correlations are already calculated, however it contains 9 numbers per Q-point per mode. It is not possible to show this on a
single plot. But:

1. We can calculate the neutron scattering cross section
2. We can select one of the components 
3. We can sum up the diagonal  

 
Questions:

How is it related to the magnetic propagation vector? 
Why are some modes gapped? Which correlations are gapped? 
Why do we have Szz?

(Q,ω)Sαβ

(Q,ω)Sαα

spec = sw_egrid(spec, 'component', {'Sxx+Syy' 'Szz'}, 'Evect', 0:0.01:5); 
% Try other components! 
figure 
sw_plotspec(spec,'mode','color','dE',0.2,'imag',false) 
axis([0 1 0 5.5]) 
caxis([0 3])
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SW

 magnetic structure

Let's try this with a  magnetic structure and explore SpinW deeper

k = 0

k = 0





SW GENERATING THE MAGNETIC STRUCTURE

 magnetic structure

Duplicate the original object using the .copy() command, 

 

Compare the energy per spin of the old magnetic structure and the new magnetic structure using the spinw.energy() function.

Questions:

Why are we using the .copy() command? 
How does the magnetic structures compare? 
Are they the same? Why the rotation?

k = 0

triNew = copy(tri); 
triNew.genmagstr('mode','rotate','n',[0 0 1]) 
phi1 = atan2(triNew.magstr.S(2,1),triNew.magstr.S(1,1)); 
triNew.genmagstr('mode','rotate','n',[0 0 1],'phi',-phi1) 
plot(triNew,'range',[3 3 1])





SW SPIN WAVE DISPERSION

Calculating the spin wave dispersion

We calculate the spin wave dispersion along the  high symmetry direction

 
Questions:

How many number of modes are there and why? 
Is there more than before? 
Why are there vertical lines in the dispersion? 
Which structure is the correct one?

(H,H, 0)

spec = triNew.spinwave({[0 0 0] [1 1 0] 500}, 'hermit', false); 
figure 
subplot(2, 1, 1) 
sw_plotspec(spec, 'mode', 'disp', 'imag', true, 'colormap', [0 0 0], 'colorbar', false) 
axis([0 1 0 5]) 
spec = sw_egrid(spec, 'component', 'Sperp', 'Evect', 0:0.01:5.5); 
subplot(2, 1, 2) 
sw_plotspec(spec, 'mode', 'color', 'dE', 0.2, 'imag', false) 
axis([0 1 0 5.5]) 
caxis([0 3])


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The FM kagome lattice

Download the script here: sw_tutorial_02.m



http://spinw.org/Tartu2019/matlab/sw_tutorial_02.m


SW EXAMPLE 2

This tutorial will be up to you, using what you have learned in tutorial 1.

Help is available by the MATLAB command, SpinW website and for a limited time.... Me.





SW SpinW

The Organic Materials Database
The organic materials database is an open access electronic structure database for 3-dimensional
organic crystals. It provides tools for search queries based on data-mining and machine learning
techniques.

PRESENTED BY

Johan Hellsvik

Senior Postdoc - Nordita
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SW SpinW

Using the OMDB and SpinW
The organic materials database has the spin-wave spectra computed for a few materials. This can
also be done using SpinW. We will introduce you on how to model a material found in the OMDB
through examples.

PRESENTED BY

Simon Ward

Scientific Software Developer - ESS

Johan Hellsvik

Senior Postdoc - Nordita
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SW

Spin wave excitations of magnetic metalorganic
materials

Introduction to the OMDB and excitations in magnetic metalorganic materials. 
All examples can be found:omdb.mathub.io



https://omdb.mathub.io/material?type=magnon


SW

Modeling Co(2-pymS)  (2-pymSH = 2-
mercaptopyrimidine)

The OMDB link is: , paper is: 

2

here here



https://omdb.mathub.io/material/cod/7018178
https://pubs.rsc.org/en/content/articlelanding/2012/DT/c2dt11738j


SW CREATING THE LATTICE (CRYSTAL STRUCTURE)

Open up the , so you have all the necessary parameter information.

Creating the lattice
Using tutorial 1 as a template, create a SpinW object
Define the lattice. As a hint, you will have to specify the symmetry of P 21 21 21 (space-group 19)

 
Add an atom of Co  at [0.08183, 0.80958, 0.37295] where the spin is 1  

 
Questions:

Plot the structure. How many Cobalt atoms have been generated?
Why are they in that position?
Compare with the image on the OMDB site.

OMDB link

s = spinw(); 
s.genlattice('lat_const', [# #, #], 'angled', [#,  #,  #], 'sym', #)

2+

s.addatom('r', [#, #, #], 'S', #, 'label', '#', 'color','b') 
s.plot()



https://omdb.mathub.io/material/cod/7018178


SW SPIN HAMILTONIAN - (EXCHANGE STRUCTURE PT1)

Generate Bonds
Use gencoupling to generate all bonds with a cutoff of 50 angstroms.
Print out the first 50 bonds.  

s.gencoupling('maxDistance', #) 
s.table('bond',#)





SW SPIN HAMILTONIAN - (EXCHANGE STRUCTURE PT2.1)

Exchange interactions
From the OMDB website, the exchange interactions are:

 
i j r [Å] Jij [meV]

1 4 5.80 -6.92
3 2 5.80 -6.92
1 3 5.77 -6.90
2 4 5.77 -6.90
1 2 10.18 0.08
4 3 10.18 0.08
2 1 9.15 0.07
3 4 9.15 0.07
1 2 9.91 0.05
3 4 9.91 0.05





SW SPIN HAMILTONIAN - (EXCHANGE STRUCTURE PT2.2)

Implementing the exchange interactions
Now we need to create the exchange matrices and assign them to bonds.

Use addmatrix to add a matrix to your SpinW object
Use addcoupling to assign the above matrix to a bond

Note the translation of bonds between OMDB and SpinW!

 

 
Questions:

Why are there 10 exchanges on the OMDB site? What are they in SpinW?
How does this effect the value of the exchange?

s.addmatrix('label', '##', 'value', ##, 'color', '##') 
s.addcoupling('mat','##','bond',#)





SW MAGNETIC STRUCTURE

Create the magnetic structure:
The magnetic structure of this compound can be described in the chemical unit cell where the spins are anti-ferromagnetic in the z-
direction.

The spins can be given using the 'direct' option.
The spins are 0 0 0 0; 0 0 0 0; 1 1 -1 -1  

Careful: the given spin vector is column vector!

Plot the magnetic structure and verify it is as expected.

s.genmagstr('mode', '###', 'S', ###)





SW SOLVE THE HAMILTONIAN USING LSWT

Calculate the spectrum
We can calculate the spin-wave spectrum at Q-points using the spinwave function. On the OMDB website we have high symmetry
trajectories throughout the Brillouin zone. The sequence of high symmetry points are for eight legs in the BZ, from \Gamma to T. The
coordinates from these high symmetry can be read out from the KPOINTS.gz file that are posted on the OMDB page. Use 500 points along
these trajectories to get the Spin-Spin correlations. These need to be converted into an observable and plotted using sw_plot.

 
Questions:

How does this compare with the result on the OMDB page?
Comment on the results and suggest a reason for the discrepancies.

spec = s.spinwave({[ _StartingPoint_ ], [ _trajectory1_ ], [ _trajectory2_ ] ... 
    [ _trajectory3_ ], [ _trajectory4_ ], ... 
    [ _trajectory5_ ], [ _trajectory6_ ], ... 
    [ _trajectory7_ ], [ _trajectory8_ ] ... 
    500}); 
sw_plotspec(spec, 'mode', 'disp', 'imag', true, 'colormap', [0 0 0], 'colorbar', false)





SW

Modeling Co(2-pymS)  (2-pymSH = 2-
mercaptopyrimidine)

The result can be found here: 

2

sw_tutorial_04.m



http://spinw.org/Tartu2019/matlab/sw_tutorial_04.m


, paper is: 

SW

Modeling C H MnO4 6 6

The OMDB link is: here here



http://spinw.org/Tartu2019/matlab/sw_tutorial_04.m
http://spinw.org/Tartu2019/matlab/sw_tutorial_04.m
https://omdb.mathub.io/material/cod/7203358
https://pubs.rsc.org/en/content/articlelanding/2006/JM/B603014A


SW DO IT YOURSELF

Generate the spin-wave spectra of C H MnO

In the previous section we showed a step by step guide on how to use OMDB to model a real material. Now it's up to you to model C H MnO
. Remember the following steps:

Generate the crystal structure.
Generate the Hamiltonian.
Generate the magnetic structure (Hint, it's the same as in the previous example)
Plot and comment on the results.
 

Don't be afraid to ask Johan and Simon for help.
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



SW SpinW

Thank you!
Well done if you're still awake!





SW SpinW




