Syntax

l = sw_bonddim(c, {natom})

Description

l = sw_bonddim(c, {natom}) splits the given periodic bond network into disjunct subsystems and determines the dimensionality of each subsystem.

Examples

Check the bond dimensionality of the triangular lattice:

tri = sw_model('triAF')

Output

Preparing 'triAF' model ...
Creating the bond list (maxDistance = 10 Å, nCell = 7x5x2)...
...25 bonds are retained out of 440 generated!
... ready!
tri = 
     SpinW object, spinw class:
     Chemical formula: A1
     Space group:      P 0
     Lattice:
       a= 3.0000 Å, b= 3.0000 Å, c= 9.0000 Å
       α= 90.00°,   β= 90.00°,   γ=120.00°
     Magnetic atoms in the unit cell: 1
     Mode:
       symbolic: off, symmetry: off, textoutput: "stdout"
sw_bonddim(tri.intmatrix.all)

Output

  0×0 empty struct array with fields:
    D
    base
    site

Input Arguments

C
Bond list in a matrix with dimensions of \([5\times n_{bond}]\), where the meaning of the rows are:
  • #1:#3 Lattice translations between the coupled atoms in lattice units (always integer).
  • #4 Index of the bond starting atom.
  • #5 Index of the bond end atom.

For example for a chain along b-axis on a Bravais lattice: C = [1;1;0;1;0]

nAtom
Number of atoms in the unit cell. If not given, the maximum atom index from the bond list is taken.

Output Arguments

L
Struct with the number of elements equal to the number of subsystems, it has the following fields:
  • D Dimensionality of the subsystem \((0\leq D\leq 3)\).
  • base Basis vectors spanning the subsystem stored in a \([3\times D]\) matrix where each column denotes a basis vector.
  • site List of sites that belong to the subsystem.