Syntax
[~, M] = sw_mirror(n)
[Vp, M] = sw_mirror(n,V)
Description
[~, M] = sw_mirror(n) generates the transformation matrix corresponding
to a mirror plane perpendicular to n
.
[Vp, M] = sw_mirror(n,V)
mirrors the vectors in V
.
To mirror any column vector use the following:
Vp = M * V
To apply mirror plane operation on tensors (\(3\times 3\) matrices) use the following command:
Ap = M * A * M'
Input Arguments
n
- 3D Row vector, normal to the mirror plane.
V
- Matrix of 3D vectors, dimensions are \([3\times N]\).
Output Arguments
Vp
- Mirrored vectors in a matrix with dimensions of \([3\times N]\).
mirM
- Matrix of the mirror transformation, dimensions are \([3\times 3]\).