y = fitfun.voigtfwhm(x,p)


y = fitfun.voigtfwhm(x,p) calculates the voigt function. The width parameters define the FWHM value. The integral of the function is normalized assuming that \(dx = 1\). The conversion between different width:

  • gamma parameter of the Lorentzian \(\gamma = w_L/2\)
  • standard deviation of the Gaussian \(\sigma = w_G/\sqrt{8\cdot\ln(2)}\)

Input Arguments

Input coordinates where the function will be calculated.
Parameters in a vector with elements [A x0 wG wL]:
  • A integral of the output assuming \(dx=1\) (for different \(dx\) multiply the amplitude with \(dx\) to keep the integral constant).
  • x0 peak center positions.
  • wG FWHM of the Gaussian component.
  • wL FWHM of the Lorentzian component.

See also

swfunc.gauss | swfunc.gaussfwhm | swfunc.pvoigt